Signal Processing First Lecture 18 3 Domains for









![h[n]: Decays & Oscillates “PERIOD”=6 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer h[n]: Decays & Oscillates “PERIOD”=6 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer](https://slidetodoc.com/presentation_image/51675c0d78cc0fe6d2ecd9babe640944/image-10.jpg)





![h[n]: Decays & Oscillates “PERIOD”=6 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer h[n]: Decays & Oscillates “PERIOD”=6 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer](https://slidetodoc.com/presentation_image/51675c0d78cc0fe6d2ecd9babe640944/image-16.jpg)

![h[n]: Decays & Oscillates “PERIOD”=12 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer h[n]: Decays & Oscillates “PERIOD”=12 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer](https://slidetodoc.com/presentation_image/51675c0d78cc0fe6d2ecd9babe640944/image-18.jpg)

![3 DOMAINS MOVIE: IIR POLE MOVES H(z) H(w) h[n] 9/18/2020 © 2003, JH Mc. 3 DOMAINS MOVIE: IIR POLE MOVES H(z) H(w) h[n] 9/18/2020 © 2003, JH Mc.](https://slidetodoc.com/presentation_image/51675c0d78cc0fe6d2ecd9babe640944/image-20.jpg)
![THREE INPUTS § Given: § Find the output, y[n] § When 9/18/2020 © 2003, THREE INPUTS § Given: § Find the output, y[n] § When 9/18/2020 © 2003,](https://slidetodoc.com/presentation_image/51675c0d78cc0fe6d2ecd9babe640944/image-21.jpg)
![SINUSOID ANSWER § Given: § The input: § Then y[n] 9/18/2020 © 2003, JH SINUSOID ANSWER § Given: § The input: § Then y[n] 9/18/2020 © 2003, JH](https://slidetodoc.com/presentation_image/51675c0d78cc0fe6d2ecd9babe640944/image-22.jpg)







![BONUS QUESTION § Given: § The input is § Then find y[n] 9/18/2020 © BONUS QUESTION § Given: § The input is § Then find y[n] 9/18/2020 ©](https://slidetodoc.com/presentation_image/51675c0d78cc0fe6d2ecd9babe640944/image-30.jpg)
- Slides: 30
Signal Processing First Lecture 18 3 -Domains for IIR 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 1
READING ASSIGNMENTS § This Lecture: § Chapter 8, all § Other Reading: § Recitation: Ch. 8, all § POLES & ZEROS § Next Lecture: Chapter 9 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 3
LECTURE OBJECTIVES § SECOND-ORDER IIR FILTERS § TWO FEEDBACK TERMS § H(z) can have COMPLEX POLES & ZEROS § THREE-DOMAIN APPROACH § BPFs have POLES NEAR THE UNIT CIRCLE 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 4
THREE DOMAINS Use H(z) to get Freq. Response Z-TRANSFORM-DOMAIN: poles & zeros POLYNOMIALS: H(z) FREQ-DOMAIN TIME-DOMAIN 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 5
Z-TRANSFORM TABLES 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 6
SECOND-ORDER FILTERS § Two FEEDBACK TERMS 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 7
MORE POLES § Denominator is QUADRATIC § 2 Poles: REAL § or COMPLEX CONJUGATES 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 8
TWO COMPLEX POLES § Find Impulse Response ? § Can OSCILLATE vs. n § “RESONANCE” § Find FREQUENCY RESPONSE § Depends on Pole Location § Close to the Unit Circle? § Make BANDPASS FILTER 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 9
2 nd ORDER EXAMPLE 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 10
h[n]: Decays & Oscillates “PERIOD”=6 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 11
2 nd ORDER Z-transform PAIR GENERAL ENTRY for z-Transform TABLE 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 12
2 nd ORDER EX: n-Domain aa bb nn hh HH = = = 9/18/2020 [ 1, -0. 9, 0. 81 ]; [ 1, -0. 45 ]; -2: 19; filter( bb, aa, (nn==0) ); freqz( bb, aa, [-pi, pi/100: pi] ); © 2003, JH Mc. Clellan & RW Schafer 13
Complex POLE-ZERO PLOT 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 14
UNIT CIRCLE § MAPPING BETWEEN 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 15
FREQUENCY RESPONSE from POLE-ZERO PLOT 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 16
h[n]: Decays & Oscillates “PERIOD”=6 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 17
Complex POLE-ZERO PLOT 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 18
h[n]: Decays & Oscillates “PERIOD”=12 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 19
Complex POLE-ZERO PLOT 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 20
3 DOMAINS MOVIE: IIR POLE MOVES H(z) H(w) h[n] 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 21
THREE INPUTS § Given: § Find the output, y[n] § When 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 22
SINUSOID ANSWER § Given: § The input: § Then y[n] 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 23
Step Response Partial Fraction Expansion 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 27
Step Response 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 28
Stability § Nec. & suff. condition: Pole must be Inside unit circle 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 29
SINUSOID starting at n=0 § We’ll look at an example in MATLAB § cos(0. 2 pn) § Pole at – 0. 8, so an is (– 0. 8) n § There are two components: § TRANSIENT § Start-up region just after n=0; (– 0. 8) n § STEADY-STATE § Eventually, y[n] looks sinusoidal. § Magnitude & Phase from Frequency Response 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 30
Cosine input 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 31
STABILITY § When Does the TRANSIENT DIE OUT ? 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 32
STABILITY CONDITION § ALL POLES INSIDE the UNIT CIRCLE § UNSTABLE EXAMPLE: POLE @ z=1. 1 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 33
BONUS QUESTION § Given: § The input is § Then find y[n] 9/18/2020 © 2003, JH Mc. Clellan & RW Schafer 34