SFGP 2011 Lille 29 nov 1 er dc

  • Slides: 23
Download presentation
SFGP 2011 Lille, 29 nov. – 1 er déc. 2011 La production de biohydrogène

SFGP 2011 Lille, 29 nov. – 1 er déc. 2011 La production de biohydrogène à partir de substrats carbohydratés : état de l'art Serge Hiligsmann, Laurent Beckers, Julien Masset, Christopher Hamilton, Philippe Thonart Walloon Centre of Industrial Biology, University of Liege , Belgium SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 1

Introduction • Processes for hydrogen production • Microbial hydrogen production • Two-stage anaerobic digestion

Introduction • Processes for hydrogen production • Microbial hydrogen production • Two-stage anaerobic digestion Advancements in biohydrogen production • Microbiology – biochemistry - physiology • Bioreactors • Researches in University of Liege SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 2

SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat

SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 3

Hydrogen production CO + H 2 O CO 2 + H 2 – Partial

Hydrogen production CO + H 2 O CO 2 + H 2 – Partial hydrocarbons oxydation – Coal or biomass gasification (High dry matter) Ca. Hb. Og + O 2 + H 2 O CO 2 + H 2 (500 109 Nm³/year) CH 4 + H 2 O CO + 3 H 2 95 % of H 2 industrial production – Methane steam reforming (800 °C) – Water electrolyse H 2 O + ½ O 2 + H 2 – Microbial production SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 4

Microbial hydrogen production Clostridium, Ruminococcus, Aeromonas, Bacillus, Escherichia, Citrobacter, Chlorobium, Rhodospirullum, Chromatium, . .

Microbial hydrogen production Clostridium, Ruminococcus, Aeromonas, Bacillus, Escherichia, Citrobacter, Chlorobium, Rhodospirullum, Chromatium, . . . Microorganisms : • Bacteria • Algae Ø phototrophic Ø chemotrophic SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 5

Carbone Light Source Anaerobiosis, Nutrients C 6 H 12 O 6 Carbone Source C

Carbone Light Source Anaerobiosis, Nutrients C 6 H 12 O 6 Carbone Source C 6 H 12 O 6 Phototrophic microorganisms Chemotrophic microorganisms CO 2 + H 2. . . 6 CO 2 + 12 H 2 High yields Alcohols, acids, . . . in aqueous solution . . . 2 CH 3 COOH + 2 CO 2 + 4 H 2 High production rate SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 6

Biodegradation processes COMPLEX ORGANIC MATTER Hydrolysis cellulases, amylases proteases, lipases, … SOLUBLE ORGANIC COMPOUNDS

Biodegradation processes COMPLEX ORGANIC MATTER Hydrolysis cellulases, amylases proteases, lipases, … SOLUBLE ORGANIC COMPOUNDS (Carbohydrates, amino acids, fatty acids) Acidogenesis Bacillus, Enterobactéria, … VOLATILE FATTY ACIDS ALCOHOLS Acetogenesis Clostridium, Ruminococcus, … CO 2 , H 2 ACETIC ACID Methanogenesis Methanobacter, Methanosarcina, … CH 4 CO 2 SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 7

Why ? a two-stage anaerobic digestion H 2 + CH 4 Improve the AD

Why ? a two-stage anaerobic digestion H 2 + CH 4 Improve the AD process / integration in agro-food industries • Resistance to shock loading (not a new topic : Pohland 1971) • Rapid production of fuel (acidogenesis faster than methanogenesis) • Higher energetic yields 10 -30% depending on substrates, process, … Diversity of energetic fuels • Energy density : EDH 2 = 33 k. Wh/kg H 2 = 2. 4 EDCH 4 • Combustion : H 2+ ½ O 2 H 2 O CO 2 = Ø • Potential use in fuel cells : Yields. FC > Yieldsengine SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 8

Hydrogen production yield (m. L/g glucose) Bacterial H 2 production (Clostridium) Time (h) SFGP

Hydrogen production yield (m. L/g glucose) Bacterial H 2 production (Clostridium) Time (h) SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 9

Clostridium butyricum Glucose Maltose Lactose Starch Hydrogen production yield (m. L/g COD) Diversity of

Clostridium butyricum Glucose Maltose Lactose Starch Hydrogen production yield (m. L/g COD) Diversity of carbohydrates substrates Sucrose Clostridium butyricum SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 10

Dark Fermentation Ø more adapted for industrial H 2 production from wastewater and biomass

Dark Fermentation Ø more adapted for industrial H 2 production from wastewater and biomass pollution reduction, energy generation Ø 70 to 250 m³ H 2/ ton of COD Ø 3 to 12 m³ H 2 per day per m³ of bioreactor (classical AD : 0, 3 – 6 m³ CH 4/ m³. d) Øsubstrates = liquid or solid wastes containing carbohydrates (starch, sucrose, lactose, …) Ø followed by effective methanisation SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 11

Brewery effluents 10 000 m 3/d wastewaters 1400 mg/L DBO 5 Residual organic matter

Brewery effluents 10 000 m 3/d wastewaters 1400 mg/L DBO 5 Residual organic matter CO 2 + H 2 150 k. W 3000 m 3 H 2 375 k. W Biogas treatment 1000 k. W Engine or steam power Bioreactor II + hot water Fuel cell CO 2 + CH 4 Bioreactor I 225 k. W Ultimate treatment 750 k. W Steam and mechanic energy Natural environment SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 12

Advancements in biohydrogen production • Strain selection • Optimisation of culture conditions • Optimisation

Advancements in biohydrogen production • Strain selection • Optimisation of culture conditions • Optimisation of bioreactors • Researches in University of Liege SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 13

H 2 production yield (m. L/g glucose) Strain selection 140 120 100 80 60

H 2 production yield (m. L/g glucose) Strain selection 140 120 100 80 60 40 20 0 AD sludge Clostridium but. Citrobacter f. Improvement of H 2 production by mixed cultures selection of spore-forming bacteria thermal, acidic or alkaline treatment SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 14

Strain selection SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène

Strain selection SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 15

H 2 production yield (m. L/g glucose) Optimisation of culture conditions Clostridium butyricum CWBI

H 2 production yield (m. L/g glucose) Optimisation of culture conditions Clostridium butyricum CWBI 1009 SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 16

Optimisation of metabolic pathways • Acetate : C 6 H 12 O 6 +

Optimisation of metabolic pathways • Acetate : C 6 H 12 O 6 + 2 H 2 O → 2 CH 3 COOH + 4 H 2 + 2 CO 2 • Butyrate : C 6 H 12 O 6 → CH 3 CH 2 COOH + 2 H 2 + 2 CO 2 SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 17

Optimisation of bioreactor 2. 3 L Sequenced batch mode H 2 yield H 2

Optimisation of bioreactor 2. 3 L Sequenced batch mode H 2 yield H 2 production rate Butyrate Acetate Ethanol Formate Lactate Clostridium butyricum CWBI 1009 è substrate converted through specific metabolic pathways with maximum H 2 yields SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 18

Feasibility of 2 nd stage 20 L Sequenced batch reactor è high efficiency of

Feasibility of 2 nd stage 20 L Sequenced batch reactor è high efficiency of methanogenesis : 170 ml CH 4 /g COD SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 19

Hydrogen production (m. L/g glucose) Bacterial H 2 production (Clostridium) Time (h) è negative

Hydrogen production (m. L/g glucose) Bacterial H 2 production (Clostridium) Time (h) è negative impact of H 2 partial pressure need for further investigations SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 20

CWBI researches and collaborations Ø CWBI : strain selection, hydrogenases expression, bioreactor design (immobilisation,

CWBI researches and collaborations Ø CWBI : strain selection, hydrogenases expression, bioreactor design (immobilisation, high G/L transfer, …), scale-up (up to 1 m³) Ø Collaborations : biogas treatment, fuel cell developments (2 -220 k. W), hydrogenases characterisation, algal biohydrogen production www. microh 2. ulg. ac. be Ø Companies: industrial developments SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 21

Conclusions è advantages of a two-stage anaerobic digestion process Resistance to shock loading, specific

Conclusions è advantages of a two-stage anaerobic digestion process Resistance to shock loading, specific optimised conditions (p. H, …), high yields and production rate, … è production of two fuels with specific interest H 2 + CH 4 èbiohydrogen production improved strain selection, p. H, bioreactor, … è need for further investigations for optimatisation G/L transfer, stability of microbial populations (immobilisation, …), scale-up, compact bioreactors, … SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 22

Thank you for your attention SFGP 2011 Lille 29 nov. – 1 er déc.

Thank you for your attention SFGP 2011 Lille 29 nov. – 1 er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann 23