Series Resistive Circuits Lets Review Current The flow

  • Slides: 35
Download presentation
Series Resistive Circuits

Series Resistive Circuits

Let’s Review!!!! Current The flow of electrons in a conductive path. I is the

Let’s Review!!!! Current The flow of electrons in a conductive path. I is the symbol for current. Current is measured in Amperes or Amps. A is the symbol for Amps.

Let’s Review!!!! Voltage The force that produces a current. V and E are the

Let’s Review!!!! Voltage The force that produces a current. V and E are the symbols for voltage. Voltage is measured in Volts. V is the symbol for Volts.

Let’s Review!!!! Resistance The opposition to the flow of electrons. R is the symbol

Let’s Review!!!! Resistance The opposition to the flow of electrons. R is the symbol for resistance. Resistance is measured in Ohms. Ω is the abbreviation for Ohms.

Let’s Review!!!! Ohm’s Law The mathematical relationship between Current, Voltage and Resistance. V IR

Let’s Review!!!! Ohm’s Law The mathematical relationship between Current, Voltage and Resistance. V IR V=I R I =V/R R=V/I

Series Circuits A Series Circuit offers a single continuous path for current to flow.

Series Circuits A Series Circuit offers a single continuous path for current to flow. Voltage Source Current Path Load “R”

Series Circuit _ V + I R

Series Circuit _ V + I R

Series Circuit Current is the same everywhere in the circuit. The Total Resistance is

Series Circuit Current is the same everywhere in the circuit. The Total Resistance is the sum of all the individual resistors. The Sum of the Voltage Drops across each resistor is equal to the Source Voltage.

R 1 _ VT I 1 I 2 IT + I 3 R 3

R 1 _ VT I 1 I 2 IT + I 3 R 3 IT = I 1 = I 2 = I 3 RT = R 1 + R 2 + R 3 VT = V 1 + V 2 + V 3 R 2

R 1=2Ω Example #1 _ VT= 10 v + IT I 1 I 2

R 1=2Ω Example #1 _ VT= 10 v + IT I 1 I 2 R 2 =3Ω Component R 1 R 2 2 A Total 2 A R(Ω) 2Ω 3Ω I(A) V(V) 2 A 10 V

Find: RT RT = R 1 + R 2 RT = 2Ω + 3Ω

Find: RT RT = R 1 + R 2 RT = 2Ω + 3Ω RT = 5Ω

R 1=2Ω Example #1 _ VT= 10 v + IT I 1 I 2

R 1=2Ω Example #1 _ VT= 10 v + IT I 1 I 2 R 2 =3Ω Component R 1 R 2 2 A Total 2 A R(Ω) 2Ω 3Ω 5Ω I(A) V(V) 2 A 10 V

Find: IT IT = V T / R T IT = 10 v /

Find: IT IT = V T / R T IT = 10 v / 5Ω IT = 2 A IT = I 1 = I 2 = 2 A Ohm’s Law VT IT R T

R 1=2Ω Example #1 _ VT= 10 v + IT I 1 I 2

R 1=2Ω Example #1 _ VT= 10 v + IT I 1 I 2 R 2 =3Ω Component R 1 R 2 2 A Total 2 A R(Ω) 2Ω 3Ω 5Ω I(A) V(V) 2 A 10 V 2 A

In a series circuit current is the same throughout the circuit!!! IT = I

In a series circuit current is the same throughout the circuit!!! IT = I 1 = I 2

R 1=2Ω Example #1 _ VT= 10 v + IT I 1 I 2

R 1=2Ω Example #1 _ VT= 10 v + IT I 1 I 2 R 2 =3Ω Component R 1 R 2 2 A Total 2 A R(Ω) I(A) V(V) 2Ω 3Ω 5Ω 2 A 2 A 2 A 10 V 2 A

Find: V 1= I 1 R 1 V 1= 2 A 2Ω V 1=

Find: V 1= I 1 R 1 V 1= 2 A 2Ω V 1= 4 V Ohm’s Law V 1 I 1 R 1

R 1=2Ω Example #1 _ VT= 10 v + IT I 1 I 2

R 1=2Ω Example #1 _ VT= 10 v + IT I 1 I 2 R 2 =3Ω Component R 1 R 2 2 A Total 2 A R(Ω) I(A) V(V) 2Ω 3Ω 5Ω 2 A 2 A 2 A 4 V 2 A 10 V

Find: V 2= I 2 R 2 V 2= 2 A 3Ω V 2=

Find: V 2= I 2 R 2 V 2= 2 A 3Ω V 2= 6 V Ohm’s Law V 2 I 2 R 2

R 1=2Ω Example #1 _ VT= 10 v + IT I 1 I 2

R 1=2Ω Example #1 _ VT= 10 v + IT I 1 I 2 R 2 =3Ω Component R 1 R 2 2 A Total 2 A R(Ω) I(A) V(V) 2Ω 3Ω 5Ω 2 A 2 A 2 A 4 V 6 V 10 V 2 A

R 1=1Ω Example _ VT= 20 v + Component R 1 R 2 R

R 1=1Ω Example _ VT= 20 v + Component R 1 R 2 R 3 Total I 1 IT R(Ω) I 2 R 2=4Ω I 3 R 3 =5Ω I(A) V(V) 1Ω 4Ω 5Ω 20 v

Find: RT RT = R 1 + R 2 + R 3 RT =

Find: RT RT = R 1 + R 2 + R 3 RT = 1Ω + 4Ω + 5Ω RT = 10Ω

R 1=1Ω Example _ VT= 20 v + Component R 1 R 2 R

R 1=1Ω Example _ VT= 20 v + Component R 1 R 2 R 3 Total I 1 IT R(Ω) 1Ω 4Ω 5Ω 10Ω I 2 R 2=4Ω I 3 R 3 =5Ω I(A) V(V) 20 v

Find: IT IT = V T / R T IT = 20 v /

Find: IT IT = V T / R T IT = 20 v / 10Ω IT = 2 A Ohm’s Law IT = I 1 = I 2 = I 3 = 2 A VT IT R T

R 1=1Ω Example _ VT= 20 v + Component R 1 R 2 R

R 1=1Ω Example _ VT= 20 v + Component R 1 R 2 R 3 Total I 1 IT I 2 R 2=4Ω I 3 R 3 =5Ω R(Ω) I(A) V(V) 1Ω 4Ω 5Ω 10Ω 2 A 2 A 20 v

Find: V 1= I 1 R 1 V 1= 2 A 1Ω V 1=

Find: V 1= I 1 R 1 V 1= 2 A 1Ω V 1= 2 V Ohm’s Law V 1 I 1 R 1

R 1=1Ω Example _ VT= 20 v + Component R 1 R 2 R

R 1=1Ω Example _ VT= 20 v + Component R 1 R 2 R 3 Total I 1 IT I 2 R 2=4Ω I 3 R 3 =5Ω R(Ω) I(A) V(V) 1Ω 4Ω 5Ω 10Ω 2 A 2 A 2 v 20 v

Find: V 2= I 2 R 2 V 2= 2 A 4Ω V 2=

Find: V 2= I 2 R 2 V 2= 2 A 4Ω V 2= 8 V Ohm’s Law V 2 I 2 R 2

R 1=1Ω Example _ VT= 20 v + Component R 1 R 2 R

R 1=1Ω Example _ VT= 20 v + Component R 1 R 2 R 3 Total I 1 IT I 2 R 2=4Ω I 3 R 3 =5Ω R(Ω) I(A) V(V) 1Ω 4Ω 5Ω 10Ω 2 A 2 A 2 v 8 v 20 v

Find: V 3= I 3 R 3 V 3= 2 A 5Ω V 3=

Find: V 3= I 3 R 3 V 3= 2 A 5Ω V 3= 10 V Ohm’s Law V 3 I 3 R 3

R 1=1Ω Example _ VT= 20 v + Component R 1 R 2 R

R 1=1Ω Example _ VT= 20 v + Component R 1 R 2 R 3 Total I 1 IT I 2 R 2=4Ω I 3 R 3 =5Ω R(Ω) I(A) V(V) 1Ω 4Ω 5Ω 10Ω 2 A 2 A 2 v 8 v 10 v 20 v

R 1=8 kΩ Example _ VT + I 1 IT=4 m. A I 2

R 1=8 kΩ Example _ VT + I 1 IT=4 m. A I 2 R 2 =2 kΩ Component R 1 R 2 2 A Total 2 A R(Ω) I(m. A) 8 kΩ 2 A 4 m. A V(V)

IT = I 1 = I 2

IT = I 1 = I 2

R 1=8 kΩ Example _ VT + I 1 IT=4 m. A I 2

R 1=8 kΩ Example _ VT + I 1 IT=4 m. A I 2 R 2 =2 kΩ Component R(Ω) I(m. A) R 1 8 kΩ 4 m. A R 2 2 A 2 kΩ 2 A 4 m. A Total 2 A 10 kΩ 4 m. A V(V) 32 v 8 v 40 v

Let’s Practice R 1= 4 kΩ _ VT= 100 V + I 1 IT=10

Let’s Practice R 1= 4 kΩ _ VT= 100 V + I 1 IT=10 m. A I 2 R 2 = ? Draw this circuit on a sheet of paper. Find: I 1 I 2 RT R 2 V 1 V 2