Sep 2014 doc IEEE 802 15 14 0604

  • Slides: 54
Download presentation
Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Project: IEEE P

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Project: IEEE P 802. 15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: Link Networks for IEEE 802. 15. 4 Date Submitted: 18 Sep, 2014 Source: Seong-Soon Joo, In-Whan Lee, Hyo-Chan Bang Company: ETRI Address: 161 Gajeong-dong, Yuseong-gu, Daejeon, KOREA Voice: +82 -42 -860 -6333, FAX: +82 -42 -860 -4197, E-Mail: ssjoo@etri. re. kr Re: Call for Final Proposals Abstract: As a final contribution proposal for the IEEE 802. 15 TG 10 standards, the layer 2 routing specification is proposed. Purpose: Final proposal to the IEEE 802. 15 TG 10 call for contribution Notice: This document has been prepared to assist the IEEE P 802. 15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P 802. 15. Submission Slide 1 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Link Networks for

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Link Networks for IEEE 802. 15. 4 Seong-Soon Joo*, In-Whan Lee, Hyo-Chan Bang ETRI Submission Slide 2 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Contents • Link

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Contents • Link Networks for IEEE 802. 15. 4 • Tiered Cluster Tree Routing • Primitives and Information Elements • Performance Evaluation Submission Slide 3 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Link Network •

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Link Network • transparent link to network layer – routed link-path from a source to a destination device – constituted of links and virtual links • virtual links: established between two devices multi-hop apart • multi-hop link connection through the routers which perform frame relaying instead of routed forwarding – performed in two stages: link connection and link network routing L 2 R router 3 PAN coordinator device 8 L 2 R router 2 device 1 router 5 device 7 device 3 router 4 router 6 device 2 device 6 device 4 device 5 Submission Slide 4 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Link Network Reference

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Link Network Reference Architecture • layered architecture – application/IP network – L 2 R network – MAC/PHY • Two sublayers for L 2 R network – MAC Link Control sublayer • reserve a resource for a link and virtual link • establish & maintain link and virtual link – MAC Link Network sublayer • maintain link-path routing information • manage link network Application Network MLN-SAP • sublayer peer protocol MAC Link Network (MLN) – encapsulated in information element • L 2 R IE : header IE • L 2 R payload IE : payload IE MLC-SAP MAC Link Control (MLC) MCPS-SAP L 2 RN MLME-SAP IEEE 802. 15. 4 MAC IEEE 802. 15. 4 PHY Submission Slide 5 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 L 2 R

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 L 2 R Link Network Features • start a PAN • setup a default link • join a PAN • maintain layer 2 routing • setup virtual links • maintain link and link-path – PAN coordinator scans, selects a PAN ID – start to transmit beacon – when receiving association request, assign a short address – device scans, selects coordinator based on distance to PAN coord, radio metric (RSSI) – connect on a default link, CAP, or access a media with CSMA-CA – send association request as a cluster root or not – get response from PAN coordinator with cluster matrix – initialize route table – maintain cluster matrix as PAN coordinator, cluster root router, router – maintain route table – setup a shared link or a dedicated link on two ends multi-hops apart – maintain link table – maintain link-path table Submission Slide 6 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 L 2 R

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 L 2 R Link and Virtual Link • establishing a link or virtual link – default link • scan parent/peer • associate request command on CAP slot • receive associate response command on CAP slot, then default link is established • in non-beacon network, default link is established – shared/dedicated link or virtual • receive link establish request from higher layer • find link or virtual link, associate to the destination device with reserving the link resource • receive associate response command from the destination device, then link or virtual link is established – maintain a link or virtual link • primitives for link – MLC-LINK-SETUP. request/indication/response/confirm • link type (shared/dedicated, uni/bi), destination address, number of slots – MLC-LINK-RELEASE. request/indication/response/confirm • source address, destination address, link ID – MLC-MANAGEMENT. request/confirm • management type (HELLO/RESET), link ID Submission Slide 7 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Setup Virtual Link

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Setup Virtual Link over DSME MAC • as an example of dedicated virtual link • a virtual link over DSME MAC – a series of links that connects two devices by switching the time slots my beacon child 2 child 1 tier 1 coord inner inward shared link inner CAP link my beacon parent child 1 inner outward shared link inner inward dedicated link neighbor tier 2 router CAP link grand parent tier 3 router Submission parent outer inward shared link my beacon outer outward shared link neighbor Slide 8 outer outward dedicated link inner inward dedicated link ETRI

Sep 2014 Gateway router MLNE doc. : IEEE 802. 15 -14 -0604 -00 -0010

Sep 2014 Gateway router MLNE doc. : IEEE 802. 15 -14 -0604 -00 -0010 Gateway router MLCE Gateway router MAC sublayer Router 1 MLCE MCPS-DATA. request data (L 2 R IE) MCPS-DATA. indication (link setup request command) Router 1 MLNE Router 1 Higher layer MLC-LINK-SETUP. request (dedicated link) MCPS-DATA. confirm MLME-DSME-GTS. request DSME-GTS request command MLME-DSMEGTS. indication MLME-DSMEGTS. response DSME-GTS reply command MLME-DSME-GTS. confirm additional sequence for bi-directional link setup MCPS-DATA. request data (L 2 R IE) MCPS-DATA. confirm (link setup request command) MCPS-DATA. indication DSME-GTS request command MLME-DSMEGTS. indication MLME-DSME-GTS. response DSME-GTS reply command MLME-DSMEGTS. request MLME-DSME-GTS. confirm data (L 2 R IE) (link setup response command) MCPS-DATA. indication MCPS-DATA. request MCPS-DATA. confirm MLC-LINK-SETUP. indication (dedicated link) MLC-LINK-SETUP. response (dedicated link) MCPS-DATA. request data (L 2 R IE) MCPS-DATA. confirm (link setup response command) MCPS-DATA. indicaiton MLC-LINK-SETUP. confirm (dedicated link) Submission ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Contents • Link

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Contents • Link Networks for IEEE 802. 15. 4 • Tiered Cluster Tree Routing • Primitives and Information Elements • Performance Evaluation Submission Slide 10 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Tiered Clusters in

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Tiered Clusters in Single PAN • PAN coordinator centered tiered cluster – devices are randomly deployed around PAN coordinator – the distance to the PAN coordinator and distance to the neighbors increase when the device moving out from the PAN coordinator – group of device can be clustered according to the depth of tiers from PAN coordinator tier 1 PD 1 a tier 2 PD 0 PD 1 c tier 3 PD 1 b 2 a Submission Slide 11 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Tiered Cluster-Tree Topology

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Tiered Cluster-Tree Topology • addressing tiered cluster-tree – MAC short address = cluster identifier + device locator – cluster specified • maximum depth of the cluster (L) • maximum number of devices connected to a router (D) • maximum number of routers among devices connected to a router (R) – device locator (Zig. Bee Cskip address) • device identifier of a parent router + 1 + (sequential order of a router at cluster depth h - 1)*size of address block at cluster depth h – size of address block • If R = 1, B(h) = 1+ D*(L- h-1) • If R ≠ 1, B(h) = (1+D-R-D*RL-h-1)/(1 -R). Gateway router (cluster ID = 0, locator ID = 0) Root Cluster Tree 0 (L 0, R 0, D 0) Cluster 1 root (cluster ID = 0, locator ID = i) (cluster ID = 1, locator ID = 0) Cluster Tree 1 (L 1, R 1, D 1) Cluster 4 root Cluster 2 root (cluster ID = 0, locator ID = j) (cluster ID = 2, locator ID = 0) Cluster Tree 2 (L 2, R 2, D 2) Cluster 3 root (cluster ID = 0, locator ID = k) (cluster ID = 3, locator ID = 0) Cluster Tree 3 (L 3, R 3, D 3) Cluster Tree 4 (L 4, R 4, D 4) Submission Slide 12 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Links of Tiered

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Links of Tiered Cluster Tree • tiered cluster • links – different size of cluster: (L, D, R) and B(h) = (1+D-R-D*RL-h-1)/(1 -R) – if runs out of address block or route cost is over threshold, one of leaf device can create a child cluster as a cluster root – tree link based on the Cskip addressing – intra-cluster mesh link – inter-cluster mesh link intra-cluster mesh link Gateway router Root Cluster Tree 0 (L 0, R 0, D 0) Cluster 1 root Cluster 2 root Cluster Tree 2 (L 2, R 2, D 2) Cluster Tree 1 (L 1, R 1, D 1) Cluster 4 root Cluster 3 root Cluster Tree 3 (L 3, R 3, D 3) inter-cluster mesh link Cluster Tree 4 (L 4, R 4, D 4) Submission Slide 13 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Tiered Cluster-Tree (TCT)

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Tiered Cluster-Tree (TCT) Routing (I) • TCT routes – composed of link, virtual link in view of link control sublayer – composed of tree link, intra-cluster mesh, inter-cluster mesh in view of link network sublayer – routing information • link table • cluster connectivity matrix, Cskip addressing • inter-cluster mesh table intra-cluster mesh link Cluster 1 root Cluster Tree 1 Gateway router Root Cluster Tree 0 Cluster 2 root Cluster Tree 2 Cluster Tree 3 Cluster 4 root Cluster Tree 4 Submission Slide 14 Cluster 3 root inter-cluster mesh link ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Tiered Cluster-Tree (TCT)

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Tiered Cluster-Tree (TCT) Routing (II) • TCT routing – with MAC address, find a cluster which a destination device is located at – check within same cluster • select inward or outward link based on address – not in same cluster • search possible paths to the destined cluster from cluster matrix, calculate route cost • select cluster tree link or inter cluster mesh link – – – check the default route, which obtains from cluster connectivity matrix, and route cost check available virtual links for this route search inter-cluster mesh link to reduce the route cost search intra-cluster mesh link to reduce the route cost from the route table Gateway select a link to transmit a frame to next hop router intra-cluster mesh link Cluster 1 root Cluster Tree 1 Root Cluster Tree 0 Cluster 2 root Cluster Tree 2 Cluster Tree 3 Cluster 4 root Submission Cluster Tree 4 Slide 15 Cluster 3 root inter-cluster mesh link ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 TCT Routing Information

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 TCT Routing Information Base (I) • PAN coordinator – PHY/MAC attribute • extended address, capability, PHY MIB, MAC MIB – PAN information • PAN ID, Beacon Interval, start time – PAN coordinator link table – PAN coordinator route table • cluster matrix, address allocation map – Temp routing information base • route update period, neighbor device table, neighbor link table • cluster root router – – – – PHY/MAC attribute PAN information router link table router route table • cluster matrix, cluster route table – Temp routing information base • device PHY/MAC attribute PAN information cluster root router link table Root cluster route table – – • cluster matrix, cluster route table – Temp routing information base Submission • router Slide 16 PHY/MAC attribute PAN information device link table device route table • cluster route table ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 TCT Routing Information

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 TCT Routing Information Base (II) • neighbor device table – device address • 16 bit address (cluster ID + router ID) • 64 bit address – link list • link – – – Submission link ID link type (CAP/CFP, default/shared/dedicated) slot ID link quality (RSSI, interference level) queue load (frame count, loss count) Slide 17 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 TCT Routing Information

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 TCT Routing Information Base (III) • cluster matrix table – cluster root router address • 16 bit address (cluster ID + router ID) • 64 bit address • reflector address – address assigned in the parent cluster or – address of opposite end neighbor router on mesh link – distance to PAN coordinator – cluster configuration • depth/number of router/number of device – child cluster list • router address – 16 bit address – reflector address Submission Slide 18 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 TCT Routing Information

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 TCT Routing Information Base (IV) • route table – destination device address • 16 bit address (cluster ID + router ID) – route list • route – link ID – route cost (distance, link quality, router load) Submission Slide 19 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 TCT Routing Metrics

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 TCT Routing Metrics • routing metrics – link metrics • link type : weights among default, shared, dedicated link • link quality : signal strength, interference level • load balance : number of frame on a link, number of loss frame on a link – route metrics • distance : number of hops to destination • link cost • route cost calculation – link cost • l(link type) + n(link quality) + m(load balance) : apply normalized function – virtual link cost • sum of link cost on the virtual link (upward, downward) – route cost • number of hops to destination • sum of hop by hop link cost : link-path cost Submission Slide 20 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Start L 2

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Start L 2 R Link Network • start router – if root router • association, cluster formation, then start – if router • association, then start • address assignment – root router PAN coordinator • cluster formation – router cluster root router • assign from reserved address block • primitives for starting L 2 R Link Network – MLN-START-NETWORK. request/confrim • PAN ID, scan channel, BO, SO, max depth, max router, max device – MLN-START-ROUTER. request/confirm • PAN ID, scan channel, max depth, max router, max device – MLN-START-DEVICE. request/confirm • PAN ID, scan channel Submission Slide 21 ETRI

Sep 2014 Gateway router MLNE doc. : IEEE 802. 15 -14 -0604 -00 -0010

Sep 2014 Gateway router MLNE doc. : IEEE 802. 15 -14 -0604 -00 -0010 Gateway router MLCE Gateway router MAC sublayer Router 1 MLCE Router 1 MLNE Router 1 Higher layer MLN-START-ROUTER. request MLME-RESET. request MLN-RESET MLME-SCAN. request MLME-SCAN. confirm MLME-ASSOCIATION. indication MLME-ASSOCIATION. response association request command (L 2 R IE) MLME-ASSOCIATION. request (Allocate Address) association response command MLME-ASSOCIATION. confirm sequence of cluster formation MLC-DATA-CLINK. request (cluster formation request) MCPS-DATA. request data (L 2 R IE) (cluster formation request command) MCPS-DATA. confirm MCPS-DATA. indication MLC-DATA-CLINK. confirm MLC-DATA-CLINK. indication (cluster formation request) assign cluster ID MLC-DATA-CLINK. request (cluster formation response) MCPS-DATA. request data (L 2 R IE) MCPS-DATA. confirm (cluster formation response MCPS-DATA. indication MLC-DATA-CLINK. confirm MLC-DATA-CLINK. indication command) (cluster formation response) establish default shared link load full cluster table MLME-START. request MLME-START. confirm LN-START-ROUTER. confirm Submission Slide 22 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 TCT Route Maintenance

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 TCT Route Maintenance (I) • maintain virtual link and router – maintain virtual link • send hello periodically from source device to destination device • check link status – maintain cluster root router • PAN coordinator send hello periodically to cluster root router • check status of cluster root router – loss beacon for some amount of time • update routing information – update cluster matrix • cluster matrix for whole network, when joining link network • partial information above/behind a certain cluster root router – update route table of a cluster Submission • whole route table, when joining link network • partial information above/behind a certain router • route information to specific destination Slide 23 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 TCT Route Maintenance

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 TCT Route Maintenance (II) • periodical update – cluster table • gateway root router, root router – route table • router root router • event driven update – start a PAN, join as a cluster root router, leave as a cluster root router • update cluster matrix and broadcast the changed part to cluster root router – join or leave as a router • update route table and broadcast the changed part to routers in the cluster – setup or release a mesh link • detect by periodically searching or upon router’s update request • if mesh link is inter cluster mesh link, change cluster matrix and broadcast • if mesh link is intra cluster mesh link, change route table and broadcast – loose sync, notified orphan from PHY/MAC • find an inward router and join again • if needed, to become a cluster root router requests to assign a cluster ID to PAN coordinator Submission Slide 24 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 TCT Route Maintenance

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 TCT Route Maintenance (III) Gateway router intra-cluster mesh link Cluster 1 root Cluster Tree 1 Root Cluster Tree 0 Cluster 2 root Cluster 3 root Cluster Tree 2 Cluster Tree 3 Cluster 4 root inter-cluster mesh link Cluster Tree 4 Submission Slide 25 ETRI

Sep 2014 Gateway router MLNE doc. : IEEE 802. 15 -14 -0604 -00 -0010

Sep 2014 Gateway router MLNE doc. : IEEE 802. 15 -14 -0604 -00 -0010 Gateway router MLCE Gateway router MAC sublayer Router 1 MLCE data MCPS-DATA. indication Router 1 MLNE Router 1 Higher layer MLN-DATA. request (no route) MLC-DATA-CLINK. indication (no route) sequence of route update find route MLC-DATA-CLINK. request MCPS-DATA. request (route update request) data (L 2 R IE) MCPS-DATA. indicaiton (route update request command) MCPS-DATA. confirm MLC-DATA-CLINK. confirm MLC--DATA-CLINK. indication (route update request command) response or forward MLC--DATA-CLINK. request (route update response or request) MCPS-DATA. request data (route update response command) data (route update request command)MCPS-DATA. indication MCPS-DATA. confirm MLC--DATA-CLINK. indication DLC-DATA-CLINK. confirm (route update response) update route MCPS-DATA. request data (MLN data) MCPS-DATA. confirm MLC-DATA-SLINK. confirm update route MLN-DATA. confirm MLC-DATA-SLINK. request MCPS-DATA. request (route update request) MCPS-DATA. confirm MLC-DATA-SLINK. confirm Submission MLC-DATA-SLINK. request (data) data (L 2 R IE) (route update request command) MCPS-DATA. indication MLC-DATA-SLINK. indication (route update request) update route MLC-DATA-SLINK. request MCPS-DATA. request (route update request) data (L 2 R IE) MCPS-DATA. confirm (route update request command) MLC-DATA-SLINK. confirm Slide 26 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Data Service of

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Data Service of L 2 R Link Network • frame forwarding – link type selection • primitive CLK/SLK/DLK & frame operation type – in/out decision • cluster connectivity matrix from cluster table – link selection (only for CLK/SLK data) • shortest cluster-tree route vs. mesh route • cluster table vs. route table Submission Slide 27 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Contents • Link

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Contents • Link Networks for IEEE 802. 15. 4 • Tiered Cluster Tree Routing • Primitives and Information Elements • Performance Evaluation Submission Slide 28 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Primitives (I) •

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Primitives (I) • primitives for starting L 2 R Link Network – MLN-START-NETWORK. request/confrim • PAN ID, scan channel, BO, SO, max depth, max router, max device – MLN-START-ROUTER. request/confirm • PAN ID, scan channel, max depth, max router, max device – MLN-START-DEVICE. request/confirm • PAN ID, scan channel – MLN-RESET. request/confirm • Default MLIB – MLN-GET. request/confirm • MLIB attribute – MLN-SET. request/confirm • MLIB attribute, length, value – MLN-MANAGEMENT. request/confirm • management type (REJOIN, LEAVE, UPDATE), PAN ID, device address, remove children indicator Submission Slide 29 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Primitives (II) •

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Primitives (II) • primitives for link – MLC-LINK-SETUP. request/indication/response/confirm • link type (shared/dedicated, uni/bi), destination address, number of slots – MLC-LINK-RELEASE. request/indication/response/confirm • source address, destination address, link ID – MLC-MANAGEMENT. request/confirm • management type (HELLO/RESET), link ID • primitives for data service – MLC-DATA-CLINK. request/indication/confirm • destination address, length, sdu handle, security enable, ACK enable – MLC-DATA-SLINK. request/indication/confirm • destination address, length, sdu handle, security enable, ACK enable – MLC-DATA-DLINK. request/indication/response/confirm • link ID, destination address, length, sdu handle, security enable, ACK enable – MLN-DATA. request/indication/confirm • tx mode, destination address, length, sdu handle, security enable Submission Slide 30 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 L 2 R

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 L 2 R Frames • L 2 R frames • define MAC header Information Element : L 2 R IE • define MAC payload Information Element : L 2 R Payload IE – define new MAC header IE and payload IE for L 2 R frames – use payload of MAC Data frame for L 2 R frames – L 2 R source/destination address – L 2 R link setup/release/hello command conveying as a link management subframe – L 2 R cluster formation/join/leave command – L 2 R route update command – L 2 R end-to-end flow control command L 2 R IE L 2 R Subframe Control Submission Link Network Addressing fields Link Management subframe Slide 31 L 2 R Payload IE Payload Link Network Management subframe Frame Payload ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Link Management Command

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Link Management Command Frames L 2 R IE L 2 R Subframe Control Bits: 0 -1 Protocol Version L 2 R Payload IE Link Network Addressing fields Bits: 2 -4 Frame Operation Type Link Management subframe 5 6 Destination Address Flag Source Address Flag 7 Destination Address Mode Bits: 0 -2 Link Management Command Type value 000 001 010 011 100 101 110 Submission Payload 8 Source Address Mode Bits: 3 -7 Sequence Number Frame Payload 9 10 11 -15 Link Flag Link Network Flag Reserved Octets: 1 Length of Link Management Command Octets: Variable Link Management Command Payload Command Type name SETUP_REQ REL_REQ HELLO_REQ Reserved SETUP_RESP REL_RESP HELLO_RESP Slide 32 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Link Management Command

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Link Management Command Payload • Link setup request/response command Octets: 1 Link Type Octets: 2 Source Address Octets: 2 Destination Address Octets: 1 Number of Slot Octets: 1 Link ID Octets: 1 Status • Link release request/response command Octets: 1 Link Type Octets: 2 Source Address Octets: 2 Destination Address Octets: 1 Link ID Octets: 1 Status • Link hello request/response command Octets: 1 Link ID Submission Octets: 2 Source Address Octets: 2 Destination Address Slide 33 Octets: 1 Status ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Link Network Management

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Link Network Management Command Frames L 2 R IE L 2 R Subframe Control Bits: 0 -1 Protocol Version Link Network Addressing fields Bits: 2 -4 Frame Operation Type 5 6 Destination Address Flag Source Address Flag 7 Destination Address Mode Bits: 0 -2 Link Network Management Command Type value 000 001 Submission 8 Source Address Mode Bits: 3 -7 Sequence Number L 2 R Payload IE Payload Link Network Management subframe Frame Payload 9 10 11 -15 Link Flag Link Network Flag Reserved Octets: 1 Length of Link Network Management Command Octets: Variable Link Network Management Command Payload Command Type name CLUSTER_REQ UPDATE_REQ 010 011 100 101 110 LEAVE_REQ FLOW_REQ CLUSTER_RESP UPDATE_RESP LEAVE_RESP 111 FLOW_RESP Slide 34 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Link Network Management

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Link Network Management Command Payload • Cluster formation request/response command Octets: 1 Max Depth Octets: 1 Max Children Octets: 1 Length of Cluster Identifier Space Octets: 1 Max Router Octets: 2 Cluster Identifier • Route update request/response command Octets: 1 Route Update Request Type Octets: 1 Route Update Response Type Octets: 2 Router Address Octets: 0/1 Number of Entry of Routing Information Base 0/Variable Routing Information Base • Flow control request/response command Submission Octets: 1 Flow Control Command Type Octets: 1 Sender Send Sequence Number Octets: 1 Sender Receive Sequence Number Octets: 1 Flow Control Command Type Octets: 1 Receiver Send Sequence Number Octets: 1 Receiver Receive Sequence Number Slide 35 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Contents • Link

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Contents • Link Networks for IEEE 802. 15. 4 • Tiered Cluster Tree Routing • Primitives and Information Elements • Performance Evaluation Submission Slide 36 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Simulation Set (I)

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Simulation Set (I) • L 2 R network for simulation – topology • • visibility of 3 grid points, neighbor consist of 28 nodes 11 X 11 (121 nodes), 33 X 33 (1, 089), 100 X 100 multicast : 1 to 5 (11 x 11), 1 to 10 (33 x 33), 1 to 20 (100 x 100) m to 1 : 5 to 1(11 x 11), 10 to 1 (33 x 33), 20 to 1 (100 x 100) – PAN coordinator – device • PHY data rate : 100 Kbps (option: 250 Kbps) • application packet rate : 1 pkt/30 min (up), 1 pkt/300 min to M-1 device (down) • packet size : 100 bytes – Peer to Peer • PHY data rate : 250 Kbps (option: 20 Kbps, 2 Mbps option) • application packet rate : 1 pkt/min (option: 1 pkt/sec, 1 pkt/30 min) • packet size : 255 bytes (option: 31 bytes, 2, 047 bytes) – energy consumption • • TX : 28 m. A RX : 11. 2 m. A idle : 1. 5 u. A battery capacity : 2, 000 m. Ah – link transmission error rates • one-hop neighbor (10 -6), one-hop across (10 -5) • two-hop neighbor (10 -4), two-hop half across (10 -3), two-hop across (10 -2) • three-hop neighbor (10 -1) Submission Slide 37 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Simulation Set (II)

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Simulation Set (II) • • evaluation cases – – PAN coordinator – device : multicast device – device : unicast device – device : multicast multiple devices – device : m to 1 – route update • 1 min for 11 x 11 • 10 min for 33 x 33 Submission evaluation parameter – amount of memory per node used for routing – calculation cost – control traffic • when initializing network • when updating network • when sending data packets – – – Slide 38 recovery time of link failure complexity scales with the size of the network end to end packet loss ratio end to end delay life time of battery ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Emulator (I) •

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Emulator (I) • set simulation scenario – – configure PHY (rate) configure MAC (async/beacon/CSMA/TDMA/superframe) configure APPL (packet rate, size) configure scenario (PAN-device: 1 -m, device-device: 11/1 -m/m-1), number of device/coord • set device deployment – assign extended address (sequential number), location (x, y), neighbor list – assign role of device (PAN coord, cluster root capable, router capable, device) – assign enter/exit device, configure scenario – set simulation active time/deactive time to each device Submission Slide 39 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Emulator (II) •

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Emulator (II) • PAC coordinator – start network • scan – associate device • assign address • set link – assign cluster root – maintain cluster matrix table – update cluster matrix table – serve to application user • route generated application data • forward application data to/from higher layer – bridge to core network Submission Slide 40 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Emulator (III) •

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Emulator (III) • cluster root router – join to PAN • scan neighbor • select parent based on distance to PAN coord, radio metric (RSSI) • request address allocation(or cluster root), routing table(cluster matrix) – establish link – routing • check within same cluster – select inward or outward link based on address – – calculate route metric select cluster tree link or inter cluster mesh link – queuing • not in same cluster • forwarding packet – route update • maintain link within cluster – – send hello periodically to device request link status – – send hello periodically to root router request cluster root status – – within cluster matrix for whole network • maintain cluster root • update route table Submission Slide 41 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Emulator (IV) •

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Emulator (IV) • router – join to PAN – routing – route update • device – join to PAN – data • application user – generate data – receive data • network events – device join/leave – router join/leave – cluster root router join/leave Submission Slide 42 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Emulator (IV) •

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Emulator (IV) • emulator scheduler • device emulator – – memory control processor MAC PHY • radio communication emulator – interference – transmission • application user emulator • L 2 R network emulator – – Submission PAC coordinator cluster root router end device Slide 43 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 L 2 R

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 L 2 R PHY/MAC • PHY – PAN coordinator – device : 100 Kbps • 868 MHz, O-QPSK, 25 ksymbol/s • Base. Slot. Duration (2. 4 ms, 30 bytes) – device : 250 Kbps • 2. 4 G, OQPSK, 62. 5 ksymbol/s • Base. Slot. Duration (0. 96 ms, 30 bytes) • MAC – superframe • slot length = 2 SO * Base. Slot. Duration • superframe duration = slot length x 16 • beacon interval = 2 BO * Base. Slot. Duration x 16 – nonbeacon-enabled PAN • 100 Kbps – slot length = 19. 2 ms – IEEE 802. 15. 4 beacon enabled PAN • 250 Kbps : BO = 7 (BI = 1. 966 sec), SO = 3 (SD = 122. 88 ms) – slot length = 7. 68 ms, CAP = 8 x 7. 68 = 56. 54 ms, CFP = 7 x 7. 68 = 53. 76 ms – IEEE 802. 15. 4 e DSME PAN • 250 Kbps : BO = 7, SO = 3, MO = 5 (number of superframe in a multi-superframe = 2 5 -3) Submission Slide 44 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Memory for Routing

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Memory for Routing (I) • amount of memory per node used for routing – neighbor device table + cluster matrix + route table • neighbor device table – router address • 16 bit address (cluster ID + router ID) • 64 bit address – link list • link – – – link ID link type (CAP/CFP, default/shared/dedicated) slot ID link quality (RSSI, interference level) queue load (frame count, loss count) – size of device table • number of device * { route address (2+8) + number of link * link infor (1+1+2+1+1) } • link within 10 -4 error rate – number of device = 12, number of link = 2 : 264 bytes Submission Slide 45 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Memory for Routing

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Memory for Routing (II) • cluster matrix table – router address • 16 bit address (cluster ID + router ID) • 64 bit address • reflector address – – address assigned in the parent cluster or address of opposite end neighbor router on mesh link – distance to PAN coordinator – cluster configuration • depth/number of router/number of device – child cluster list • router address – – 16 bit address reflector address – size of cluster matrix table • {1+number of tier 1 cluster+ … + tier n-1 cluster}* {route address (2+8+2) +(1+3) + number of child root * route address (2+2) } • 11 x 11 – number of child cluster =0, number of child root = 0 : 16 bytes • 33 x 33 – number of tier 1 ~ n-1 child cluster =0, number of child root = 12 : 112 bytes • 100 x 100 – number of tier 1 ~ n-1 child cluster =60, number of child root = 6 : 1, 200 bytes Submission Slide 46 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Memory for Routing

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Memory for Routing (III) • route table – device address • 16 bit address (cluster ID + router ID) – route list • route – link ID – route cost (distance, link quality, router load) – size of route table • number of device * { device address (2) + number of route * route infor (1+1) } • in a cluster – number of destination from a cluster = 50, number of route = 8 : 900 bytes • amount of memory per node used for routing – 11 x 11 • 264+16+900 = 1, 180 bytes – 33 x 33 • 264+112+900 = 1, 276 bytes – 100 x 100 • 264+1, 200+900 = 2, 364 bytes Submission Slide 47 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Construction Overhead •

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Construction Overhead • 11 x 11 – when initializing network • 1 packet upward • 1 packets downward – when updating network • full update : 1 packets downward • partial update : 1 packet downward • 33 x 33 – when initializing network • 1 packet upward • 2 packets downward – when updating network • full update : 2 packets downward • partial update : 1~2 packet downward • 100 x 100 – when initializing network • 1 packet upward • 12 packets downward – when updating network • full update : 12 packets downward • partial update : 1~4 packet downward Submission Slide 48 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Recovery Overhead •

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Recovery Overhead • 11 x 11 – when initializing network • 1 packet upward • 1 packets downward – when recovering network • 1 packet upward • 9 packets downward • 33 x 33 – when initializing network • 1 packet upward • 2 packets downward – when recovering network • 1 packet upward • 9 packets downward • 100 x 100 – when initializing network • 1 packet upward • 12 packets downward – when recovering network • 1 packet upward • 9 packets downward Submission Slide 49 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Topology Construction and

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Topology Construction and Recovery Time • simulation set – IEEE 802. 15. 4 e DSME MAC (250 Kbps) – one hop : transmission error rate is less than 10 -4 (two grids apart) – cluster : max 5 depth • Construction Time Location of Device 11 x 11 33 x 33 100 x 100 Shortest edge 13. 762 35. 388 121. 892 Longest edge 21. 626 66. 844 220. 192 Recovery Type 11 x 11 33 x 33 100 x 100 Initializing 13. 762 35. 388 121. 892 Route Update 29. 49 37. 24 • Recovery Time Submission Slide 50 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 PAN Coordinator -

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 PAN Coordinator - Device Comm. Type Dev PAN coord Dev multicast Submission Performance 11 x 11 33 x 33 100 x 100 Number of Hops (avg, max) 2. 28, 5 8. 5, 16 25. 5, 50 Transmission Delay (min, avg, max) 1. 96, 5. 88, 17. 64 1. 96, 33. 32, 60. 76 1. 96, 96. 04, 194. 04 Number of Hops (avg, max) 3. 8, 5 14, 16 45. 5, 50 Transmission Delay (min, avg, max) 9. 8, 13. 72, 17. 64 45. 08, 52. 92, 60. 76 158. 76, 178. 36, 194. 04 Slide 51 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Device - Device

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Device - Device Comm. Type Dev unicast Dev multicast Multi Dev Submission Performance 11 x 11 33 x 33 100 x 100 Number of Hops (avg) 10 32 99 Transmission Delay (avg) 37. 24 123. 48 386. 12 Number of Hops (avg, max) 8. 8, 10 30, 32 94. 5, 99 Transmission Delay (min, avg, max) 29. 4, 33. 32, 37. 24 107. 8, 115. 64, 123. 48 350. 84, 370. 44, 386. 12 Slide 52 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Power Consumption •

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Power Consumption • IEEE 802. 15. 4 e DSME (BO=7, SO=3, MO=5) : CFP slots = 112 • PAN coordinator : 1 packet/300 min • device : 1 packet/min Comm. Type Device Type 11 x 11 33 x 33 100 x 100 PAN coord Dev broadcast PAN Coordinator 1. 058 m. Ah/day 1. 321 m. Ah/day 3. 747 m. Ah/day Device 0. 4103 m. Ah/day PAN coord Dev multicast PAN Coordinator 1. 0267 m. Ah/day 1. 0281 m. Ah/day 1. 0308 m. Ah/day Device 0. 4103 m. Ah/day Dev unicast Source Device 0. 488 m. Ah/day PAN Coordinator 1. 135 m. Ah/day Source Device 0. 802 m. Ah/day 1. 194 m. Ah/day 1. 978 m. Ah/day PAN Coordinator 1. 574 m. Ah/day 2. 123 m. Ah/day 3. 220 m. Ah/day Dev multicast Submission Slide 53 ETRI

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Summary • virtual

Sep 2014 doc. : IEEE 802. 15 -14 -0604 -00 -0010 Summary • virtual link • link path • load balanced link path maintaining • unbalanced cluster-tree based address assignment • tiered cluster-tree routing • directional multiple grades mesh connection • beacon-enabled multi-hop link network formation • MAC primitives & command frames Submission Slide 54 ETRI