Seoul National University Virtual Memory Systems 1 Seoul

  • Slides: 32
Download presentation
Seoul National University Virtual Memory: Systems 1

Seoul National University Virtual Memory: Systems 1

Seoul National University Virtual Memory: Systems ¢ ¢ ¢ Virtual memory questions and answers

Seoul National University Virtual Memory: Systems ¢ ¢ ¢ Virtual memory questions and answers Simple memory system example Case study: Core i 7/Linux memory system 2

Seoul National University Virtual memory reminder/review ¢ Programmer’s view of virtual memory § Each

Seoul National University Virtual memory reminder/review ¢ Programmer’s view of virtual memory § Each process has its own private linear address space § Cannot be corrupted by other processes ¢ System view of virtual memory § Uses memory efficiently by caching virtual memory pages Efficient only because of locality § Simplifies memory management and programming § Simplifies protection by providing a convenient interpositioning point to check permissions § 3

Seoul National University Recall: Address Translation With a Page Table Virtual address Page table

Seoul National University Recall: Address Translation With a Page Table Virtual address Page table base register (PTBR) Page table address for process n-1 p p-1 Virtual page number (VPN) 0 Virtual page offset (VPO) Page table Valid Physical page number (PPN) Valid bit = 0: page not in memory (page fault) m-1 Physical page number (PPN) p p-1 0 Physical page offset (PPO) Physical address 4

Seoul National University Recall: Address Translation: Page Hit 2 PTEA CPU Chip CPU 1

Seoul National University Recall: Address Translation: Page Hit 2 PTEA CPU Chip CPU 1 VA PTE MMU 3 PA Cache/ Memory 4 Data 5 1) Processor sends virtual address to MMU 2 -3) MMU fetches PTE from page table in memory 4) MMU sends physical address to cache/memory 5) Cache/memory sends data word to processor 5

Seoul National University Question #1 ¢ Are the PTEs cached like other memory accesses?

Seoul National University Question #1 ¢ Are the PTEs cached like other memory accesses? ¢ Yes (and no: see next question) 6

Seoul National University Page tables in memory, like other data PTE CPU Chip PTEA

Seoul National University Page tables in memory, like other data PTE CPU Chip PTEA CPU PTEA hit VA MMU PTEA miss PA PA miss PA Memory Data PA hit Data PTEA L 1 cache VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address 7

Seoul National University Question #2 ¢ Isn’t it slow to have to go to

Seoul National University Question #2 ¢ Isn’t it slow to have to go to memory twice every time? ¢ Yes, it would be… so, real MMUs don’t 8

Seoul National University Speeding up Translation with a TLB ¢ Page table entries (PTEs)

Seoul National University Speeding up Translation with a TLB ¢ Page table entries (PTEs) are cached in L 1 like any other memory word § PTEs may be evicted by other data references § PTE hit still requires a small L 1 delay ¢ Solution: Translation Lookaside Buffer (TLB) § Small, dedicated, super-fast hardware cache of PTEs in MMU § Contains complete page table entries for small number of pages 9

Seoul National University TLB Hit CPU Chip CPU TLB 2 PTE VPN 3 1

Seoul National University TLB Hit CPU Chip CPU TLB 2 PTE VPN 3 1 VA MMU PA 4 Cache/ Memory Data 5 A TLB hit eliminates a memory access 10

Seoul National University TLB Miss CPU Chip TLB 2 4 PTE VPN CPU 1

Seoul National University TLB Miss CPU Chip TLB 2 4 PTE VPN CPU 1 VA MMU 3 PTEA PA Cache/ Memory 5 Data 6 A TLB miss incurs an additional memory access (the PTE) Fortunately, TLB misses are rare. Why? 11

Seoul National University Question #3 ¢ Isn’t the page table huge? How can it

Seoul National University Question #3 ¢ Isn’t the page table huge? How can it be stored in RAM? ¢ Yes, it would be… so, real page tables aren’t simple arrays 12

Seoul National University Multi-Level Page Tables ¢ Suppose: § 4 KB (212) page size,

Seoul National University Multi-Level Page Tables ¢ Suppose: § 4 KB (212) page size, 64 -bit address space, 8 -byte PTE ¢ Problem: § Would need a 32, 000 TB page table! § Level 2 Tables Level 1 Table 264 * 2 -12 * 23 = 255 bytes. . . ¢ Common solution: § Multi-level page tables § Example: 2 -level page table Level 1 table: each PTE points to a page table (always memory resident) § Level 2 table: each PTE points to a page (paged in and out like any other data) . . . § 13

Seoul National University A Two-Level Page Table Hierarchy Level 1 page table Level 2

Seoul National University A Two-Level Page Table Hierarchy Level 1 page table Level 2 page tables Virtual memory VP 0 PTE 1 . . . PTE 2 (null) PTE 1023 PTE 3 (null) PTE 0 PTE 5 (null) . . . PTE 6 (null) PTE 1023 VP 1024 2 K allocated VM pages for code and data . . . Gap PTE 7 (null) (1 K - 9) null PTEs . . . VP 2047 PTE 4 (null) PTE 8 0 6 K unallocated VM pages 1023 null PTEs PTE 1023 . . . 32 bit addresses, 4 KB pages, 4 -byte PTEs 1023 unallocated pages VP 9215 1023 unallocated pages 1 allocated VM page for the stack 14

Seoul National University Translating with a k-level Page Table VIRTUAL ADDRESS n-1 VPN 2

Seoul National University Translating with a k-level Page Table VIRTUAL ADDRESS n-1 VPN 2 Level 2 page table Level 1 page table . . p-1 VPN k 0 VPO Level k page table PPN m-1 p-1 PPN 0 PPO PHYSICAL ADDRESS 15

Seoul National University Virtual Memory: Systems ¢ ¢ ¢ Virtual memory questions and answers

Seoul National University Virtual Memory: Systems ¢ ¢ ¢ Virtual memory questions and answers Simple memory system example Case study: Core i 7/Linux memory system 16

Seoul National University Review of Symbols ¢ Basic Parameters § N = 2 n

Seoul National University Review of Symbols ¢ Basic Parameters § N = 2 n : Number of addresses in virtual address space § M = 2 m : Number of addresses in physical address space § P = 2 p : Page size (bytes) ¢ Components of the virtual address (VA) § § ¢ VPO: Virtual page offset VPN: Virtual page number TLBI: TLB index TLBT: TLB tag Components of the physical address (PA) § § § PPO: Physical page offset (same as VPO) PPN: Physical page number CO: Byte offset within cache line CI: Cache index CT: Cache tag 17

Seoul National University Simple Memory System Example ¢ Addressing § 14 -bit virtual addresses

Seoul National University Simple Memory System Example ¢ Addressing § 14 -bit virtual addresses § 12 -bit physical address § Page size = 64 bytes 13 12 11 10 9 8 7 6 5 4 3 2 1 VPN VPO Virtual Page Number Virtual Page Offset 11 10 9 8 7 6 5 4 3 2 1 PPN PPO Physical Page Number Physical Page Offset 0 0 18

Seoul National University Simple Memory System Page Table Only show first 16 entries (out

Seoul National University Simple Memory System Page Table Only show first 16 entries (out of 256) VPN PPN Valid 00 28 1 08 13 1 01 – 0 09 17 1 02 33 1 0 A 09 1 03 02 1 0 B – 0 04 – 0 0 C – 0 05 16 1 0 D 2 D 1 06 – 0 0 E 11 1 07 – 0 0 F 0 D 1 19

Seoul National University Simple Memory System TLB ¢ ¢ 16 entries 4 -way associative

Seoul National University Simple Memory System TLB ¢ ¢ 16 entries 4 -way associative TLBT 13 12 11 10 TLBI 9 8 7 6 5 4 3 2 1 0 VPO VPN Set Tag PPN Valid 0 03 – 0 09 0 D 1 00 – 0 07 02 1 1 03 2 D 1 02 – 0 04 – 0 0 A – 0 2 02 – 0 08 – 0 06 – 0 03 – 0 3 07 – 0 03 0 D 1 0 A 34 1 02 – 0 20

Seoul National University Simple Memory System Cache ¢ ¢ ¢ 16 lines, 4 -byte

Seoul National University Simple Memory System Cache ¢ ¢ ¢ 16 lines, 4 -byte block size Physically addressed Direct mapped CT 11 10 9 CI 8 7 6 5 4 CO 3 PPN 2 1 0 PPO Idx Tag Valid B 0 B 1 B 2 B 3 0 19 1 99 11 23 11 8 24 1 3 A 00 51 89 1 15 0 – – 9 2 D 0 – – 2 1 B 1 00 02 04 08 A 2 D 1 93 15 DA 3 B 3 36 0 – – B 0 B 0 – – 4 32 1 43 6 D 8 F 09 C 12 0 – – 5 0 D 1 36 72 F 0 1 D D 16 1 04 96 34 15 6 31 0 – – E 13 1 83 77 1 B D 3 7 16 1 11 C 2 DF 03 F 14 0 – – 21

Seoul National University Address Translation Example #1 Virtual Address: 0 x 03 D 4

Seoul National University Address Translation Example #1 Virtual Address: 0 x 03 D 4 TLBT TLBI 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 1 0 1 0 0 VPN 0 x 0 F ___ 0 x 3 TLBI ___ VPO Y TLB Hit? __ 0 x 03 TLBT ____ N Page Fault? __ PPN: 0 x 0 D ____ Physical Address CI CT 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 1 0 1 0 0 PPN 0 CO ___ CO 0 x 5 CI___ 0 x 0 D CT ____ PPO Y Hit? __ 0 x 36 Byte: ____ 22

Seoul National University Address Translation Example #2 Virtual Address: 0 x 0 B 8

Seoul National University Address Translation Example #2 Virtual Address: 0 x 0 B 8 F TLBT TLBI 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 1 VPN 0 x 2 E ___ 2 TLBI ___ VPO N TLB Hit? __ 0 x 0 B TLBT ____ Y Page Fault? __ TBD PPN: ____ Physical Address CI CT 11 10 9 8 7 6 PPN CO ___ CI___ CT ____ 5 4 CO 3 2 1 0 PPO Hit? __ Byte: ____ 23

Seoul National University Address Translation Example #3 Virtual Address: 0 x 0020 TLBT TLBI

Seoul National University Address Translation Example #3 Virtual Address: 0 x 0020 TLBT TLBI 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 0 0 0 VPN 0 x 00 ___ 0 TLBI ___ VPO N TLB Hit? __ 0 x 00 TLBT ____ N Page Fault? __ PPN: 0 x 28 ____ Physical Address CI CT 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 0 0 0 PPN 0 CO___ CO 0 x 8 CI___ 0 x 28 CT ____ PPO N Hit? __ Mem Byte: ____ 24

Seoul National University Virtual Memory: Systems ¢ ¢ ¢ Virtual memory questions and answers

Seoul National University Virtual Memory: Systems ¢ ¢ ¢ Virtual memory questions and answers Simple memory system example Case study: Core i 7/Linux memory system 25

Seoul National University Intel Core i 7 Memory System Processor package Core x 4

Seoul National University Intel Core i 7 Memory System Processor package Core x 4 Registers Instruction fetch L 1 d-cache 32 KB, 8 -way L 1 i-cache 32 KB, 8 -way L 2 unified cache 256 KB, 8 -way MMU (addr translation) L 1 d-TLB 64 entries, 4 -way L 1 i-TLB 128 entries, 4 -way L 2 unified TLB 512 entries, 4 -way Quick. Path interconnect 4 links @ 25. 6 GB/s each L 3 unified cache 8 MB, 16 -way (shared by all cores) To other cores To I/O bridge DDR 3 Memory controller 3 x 64 bit @ 10. 66 GB/s 32 GB/s total (shared by all cores) Main memory 26

Seoul National University Review of Symbols ¢ ¢ ¢ Basic Parameters § N =

Seoul National University Review of Symbols ¢ ¢ ¢ Basic Parameters § N = 2 n : Number of addresses in virtual address space § M = 2 m : Number of addresses in physical address space § P = 2 p : Page size (bytes) Components of the virtual address (VA) § TLBI: TLB index § TLBT: TLB tag § VPO: Virtual page offset § VPN: Virtual page number Components of the physical address (PA) § PPO: Physical page offset (same as VPO) § PPN: Physical page number § CO: Byte offset within cache line § CI: Cache index § CT: Cache tag 27

Seoul National University End-to-end Core i 7 Address Translation 32/64 CPU L 2, L

Seoul National University End-to-end Core i 7 Address Translation 32/64 CPU L 2, L 3, and main memory Result Virtual address (VA) 36 12 VPN VPO 32 L 1 miss L 1 hit 4 TLBT TLBI L 1 d-cache (64 sets, 8 lines/set) TLB hit . . . TLB miss L 1 TLB (16 sets, 4 entries/set) 9 9 40 VPN 1 VPN 2 VPN 3 VPN 4 PPN CR 3 PTE PTE Page tables PTE 12 40 6 6 PPO CT CI CO Physical address (PA) 28

Seoul National University Core i 7 Page Table Translation 9 9 VPN 1 CR

Seoul National University Core i 7 Page Table Translation 9 9 VPN 1 CR 3 Physical address of L 1 PT 40 / L 1 PT Page global directory L 1 PTE 512 GB region per entry 9 VPN 2 L 2 PT Page upper 40 directory / VPN 3 L 3 PT Page middle 40 directory / L 2 PTE 9 VPN 4 2 MB region per entry VPO Virtual address L 4 PT Page table 40 / Offset into /12 physical and virtual page L 4 PTE L 3 PTE 1 GB region per entry 12 4 KB region per entry Physical address of page 40 / 40 12 PPN PPO Physical address 29

Seoul National University Cute Trick for Speeding Up L 1 Access CT Physical address

Seoul National University Cute Trick for Speeding Up L 1 Access CT Physical address (PA) Virtual address (VA) ¢ Observation § § § 36 CT 6 6 CI CO PPN PPO Tag Check No Change Address Translation CI VPN VPO 36 12 L 1 Cache Bits that determine CI identical in virtual and physical address Can index into cache while address translation taking place Generally we hit in TLB, so PPN bits (CT bits) available next “Virtually indexed, physically tagged” Cache carefully sized to make this possible 30

Seoul National University Summary ¢ ¢ ¢ Memory hierarchies are an optimization resulting from

Seoul National University Summary ¢ ¢ ¢ Memory hierarchies are an optimization resulting from a perfect match between memory technology and two types of program locality § Temporal locality § Spatial locality The goal is to provide a “virtual” memory technology (an illusion) that has an access time of the highest-level memory with the size and cost of the lowest-level memory Cache memory and virtual memory are instances of a memory hierarchy 31

Seoul National University A Common Framework for Memory Hierarchies ¢ Question 1: Where can

Seoul National University A Common Framework for Memory Hierarchies ¢ Question 1: Where can a Block be Placed? One place (directmapped), a few places (set associative), or any place (fully associative) ¢ Question 2: How is a Block Found? Indexing (direct-mapped), limited search (set associative), full search (fully associative) ¢ Question 3: Which Block is Replaced on a Miss? Typically LRU or random ¢ Question 4: How are Writes Handled? Write-through or writeback 32