Sensitivity on sterile neutrinos with sources in Borexino

  • Slides: 53
Download presentation
Sensitivity on sterile neutrinos with sources in Borexino A. Ianni Phys. Dept. , Princeton

Sensitivity on sterile neutrinos with sources in Borexino A. Ianni Phys. Dept. , Princeton May 9 th, 2011

Outline • Introduction – Anomalies/hints for sterile neutrinos in the framework of neutrino phenomenology

Outline • Introduction – Anomalies/hints for sterile neutrinos in the framework of neutrino phenomenology • Hints from Cosmology and BBN • The Borexino experiment – Main feature and present results • An artificial neutrino source in Borexino – The physics case and the sterile neutrino search • Conclusions

Standard interpretation of neutrino phenomenology Data from experiments on solar neutrinos, long-baseline reactor neutrinos,

Standard interpretation of neutrino phenomenology Data from experiments on solar neutrinos, long-baseline reactor neutrinos, atmospheric neutrinos and from accelerators explained in the framework of Three-neutrino mixing oscillations with two squared-mass differences

The case ot two-neutrino oscillations

The case ot two-neutrino oscillations

Global fit of three neutrino mixing • Leading Dm 212 oscillations – Solar neutrino

Global fit of three neutrino mixing • Leading Dm 212 oscillations – Solar neutrino and Kam. LAND data – Solar neutrino: Homestake, Gallex/GNO, SAGE, SNO, Super. Kamiokande and Borexino • Leading Dm 231 oscillations – Atmospheric neutrinos, CHOOZ and LBL accelerator (nm disappearance and nm -> ne appearance) data – Super. Kamiokande(I+II+III), K 2 K and MINOS

Mass hierarchy and oscillations Reactor anti-neutrinos 2 n Dm 231 q 13 q 12

Mass hierarchy and oscillations Reactor anti-neutrinos 2 n Dm 231 q 13 q 12 3 n Dm 221 SBL Dm 221 Dm 231 LBL

Anomalies/hints for 2 Dm ≅1 2 e. V

Anomalies/hints for 2 Dm ≅1 2 e. V

LSND and Mini. Boo. NE • • LSND – Appearance: – L/E ~ (25

LSND and Mini. Boo. NE • • LSND – Appearance: – L/E ~ (25 -35 m)/(20 – 53 Me. V) ~ 0. 5 – 2 m/Me. V – Electron anti-neutrino candidates: 87. 9± 22. 4± 6. 0 (3. 8 s) – Pme = 0. 264± 0. 067± 0. 045 Mini. Boo. NE – Appearance: – L/E ~ 1 Km/1 Ge. V – Neutrino mode: no evidence of oscillations above 450 Me. V – Low energy (200 -450 Me. V) excess: 128. 8± 20. 4± 38. 3 (3. 0 s) – Possible explanation from SBL disappearance Giunti, Laveder, PRD 82, 053005 (2010) – Anti-neutrino mode: 20. 9± 14. 0 excess event L/E – p-value of null hypothesis = 0. 5% – p-value for 2 n oscillation hypothesis = 9% – Oscillation hypothesis better at 99. 5% C. L.

Reactor anomaly • A re-evaluation of the expected anti-neutrino flux from reactors has given

Reactor anomaly • A re-evaluation of the expected anti-neutrino flux from reactors has given a new boost to the possibility of 1 -2 sterile neutrino scenarios – G. Mention et al. , Reactor Anomaly, ar. Xiv: 1101. 2755 – J. Kopp, M. Maltoni and T. Schwetz, Are there neutrinos at the e. V scale? ar. Xiv: 1103. 4570

Reactor anomaly: 2 n oscillation hypothesis No oscillation hypothesis rejected at 98. 6% C.

Reactor anomaly: 2 n oscillation hypothesis No oscillation hypothesis rejected at 98. 6% C. L.

Adapted from C. Giunti at Beyond 3 n 2011

Adapted from C. Giunti at Beyond 3 n 2011

Adapted from C. Giunti at Beyond 3 n 2011

Adapted from C. Giunti at Beyond 3 n 2011

Adding 1 -2 sterile neutrinos • 3+1 mass scheme Dm 2 SBL Dm 231

Adding 1 -2 sterile neutrinos • 3+1 mass scheme Dm 2 SBL Dm 231 Dm 221 • 3+2 mass scheme

3+1 scheme fit _ _ MBn + LSNDn Giunti, Laveder PRD 83 (2011) _

3+1 scheme fit _ _ MBn + LSNDn Giunti, Laveder PRD 83 (2011) _ Tension in the data when n and n are combined

Fit data in 3+1 and 3+2 scenarios Data from J. Kopp, M. Maltoni and

Fit data in 3+1 and 3+2 scenarios Data from J. Kopp, M. Maltoni and T. Schwetz, ar. Xiv: 1103. 4570 Reactor anomaly Dm 241 [e. V 2] |Ue 4| 3+1 1. 78 0. 151 3+2 0. 46 0. 108 Dm 241 [e. V 2] |Ue 5| 0. 89 0. 124 c 2/dof [p-value] C. L. to reject null 50. 1/67 [0. 939] 98. 6% 46. 5/65 [0. 96] 98. 3% Reactor anomaly + LSND + Mini. Boo. NE 3+2 Dm 241 [e. V 2] |Ue 4| |Um 4| Dm 241 [e. V 2] |Ue 5| |Um 5| d/p c 2/dof [pvalue] Reject 3+1 vs 3+2 0. 47 0. 128 0. 154 0. 87 0. 138 1. 64 110. 1/ 130 [0. 896] 97. 6%

The effect of 2 sterile neutrinos 850 m baseline appearance Anti-neutrino Neutrino disappearance

The effect of 2 sterile neutrinos 850 m baseline appearance Anti-neutrino Neutrino disappearance

The case of reactor anti-neutrinos q 13 , Dm 13~3× 10 -3 e. V

The case of reactor anti-neutrinos q 13 , Dm 13~3× 10 -3 e. V 2 q 14 , Dm 14~0. 1 -1 e. V 2 q 12 , Dm 12~10 -4 e. V 2 n source SBL LBL

SBL approximation LBL disappearance for electron anti-neutrinos (Kam. LAND) can restrict |U e 4|

SBL approximation LBL disappearance for electron anti-neutrinos (Kam. LAND) can restrict |U e 4| 3 s

Constraints from cosmology J. Hamann et al, ar. Xiv: 1006. 5276 Probe number of

Constraints from cosmology J. Hamann et al, ar. Xiv: 1006. 5276 Probe number of non-standard relativistic d. o. f. DNeff which give a contribution to radiation in early Universe Ns = number of thermalized “sterile neutrinos” CMB + LSS in LCDM DNeff > 0 delays radiation-matter equality 3 + Ns scheme with ordinary neutrinos having mn=0 gives ms < 1 e. V

Constraints from BBN • Extra relativistic d. o. f. in thermal equilibrium in the

Constraints from BBN • Extra relativistic d. o. f. in thermal equilibrium in the early universe change the 4 He abundance, Yp – DYp ~ 0. 01 DNeff • BBN can provide information on mixing and masses of possible sterile neutrinos • Needed a robust determination of Yp • At present (1 -2 s) hints for Nn > 3 (Izotov et al 2010) • Mangano et al. 2001: Nn < 4. 2 (95% C. L. )

Borexino

Borexino

Borexino experiment Goals: 1) 7 Be solar neutrinos 2) 8 B solar neutrinos 3)

Borexino experiment Goals: 1) 7 Be solar neutrinos 2) 8 B solar neutrinos 3) Geo-neutrinos 4) SN neutrinos 5) Rare processes Method: 1) 300 tons of high purity organic LS 2) High energy resolution 5%/1 Me. V 3) Good PSD 3) Good event vertex Reconstruction: ~12 cm/1 Me. V

Solar neutrinos in Borexino hep-ex/1104. 1816 v 1 7 Be = 46. 0 ±

Solar neutrinos in Borexino hep-ex/1104. 1816 v 1 7 Be = 46. 0 ± 1. 5+1. 6 cpd/100 tons -1. 5 210 Bi pp 85 Kr removed! pep & CNO

Three-neutrino mixing global fit with Borexino Day-night measurement

Three-neutrino mixing global fit with Borexino Day-night measurement

Solar neutrino survival probability

Solar neutrino survival probability

Electron anti-neutrinos in Borexino Strong tagging Low background

Electron anti-neutrinos in Borexino Strong tagging Low background

Systematic uncertainties

Systematic uncertainties

Position and energy calibration • On and off axis calibrations sources • Rn, Am.

Position and energy calibration • On and off axis calibrations sources • Rn, Am. Be • 57 Co, 139 Ce, 208 Hg, 85 Sr, 54 Mn, 65 Zn, 40 K, 60 Co

How to use a neutrino source in Borexino

How to use a neutrino source in Borexino

The idea to use a neutrino source in Borexino and in other underground experiments

The idea to use a neutrino source in Borexino and in other underground experiments – – – – N. G. Basov, V. B. Rozanov, JETP 42 (1985) Borexino proposal, 1991 J. N. Bahcall, P. I. Krastev, E. Lisi, Phys. Lett. B 348: 121 -123, 1995 N. Ferrari, G. Fiorentini, B. Ricci, Phys. Lett B 387, 1996 I. R. Barabanov et al. , Astrop. Phys. 8 (1997) Gallex coll. PL B 420 (1998) 114 A. Ianni, D. Montanino, Astrop. Phys. 10, 1999 A. Ianni, D. Montanino, G. Scioscia, Eur. Phys. J C 8, 1999 SAGE coll. PRC 59 (1999) 2246 SAGE coll. PRC 73 (2006) 045805 C. Grieb, J. Link, R. S. Raghavan, Phys. Rev. D 75: 093006, 2007 V. N. Gravrin et al. , ar. Xiv: nucl-ex: 1006. 2103 C. Giunti, M. Laveder, Phys. Rev. D 82: 113009, 2010 C. Giunti, M. Laveder, ar. Xiv: 1012. 4356

The physics case with a source experiment • • • Neutrino magnetic moment Neutrino-electron

The physics case with a source experiment • • • Neutrino magnetic moment Neutrino-electron non standard interactions Probe ne- e weak couplings at 1 Me. V scale Probe sterile neutrinos at 1 e. V scale Probe neutrino vs anti-neutrino oscillations on 10 m scale

Source location in Borexino • A: underneath WT – D=825 cm – No change

Source location in Borexino • A: underneath WT – D=825 cm – No change to present configuration • B: inside WT – D = 700 cm – Need to remove shielding water C • C: center – Major change – Remove inner vessels – To be done at the end of solar neutrino physics A B

Source position A

Source position A

Source position A

Source position A

Source number of events • Source @ center • External source

Source number of events • Source @ center • External source

Solid angle calculation Rate only analysis r d d Determine oscillation pattern vs source-vertex

Solid angle calculation Rate only analysis r d d Determine oscillation pattern vs source-vertex distance

Sources

Sources

51 Cr ~36 kg of 38% enriched 50 Cr 190 W/MCi from 320 ke.

51 Cr ~36 kg of 38% enriched 50 Cr 190 W/MCi from 320 ke. V 7 m. Sv/h (must be < 200) SAGE coll. , PRC 59 (1999) 2246 Gallex coll. , PL B 420 (1998) Done two times for Gallex at 35 MW reactor with effective thermal neutrons flux of ~5. 4 E 13 cm-2 s-1 ~1. 8 MCi

Cr 51 Gallex source

Cr 51 Gallex source

The case of 51 Cr source in Borexino

The case of 51 Cr source in Borexino

37 Ar(t=50. 55 37 Cl days) 813 ke. V (9. 8%) 811 ke. V

37 Ar(t=50. 55 37 Cl days) 813 ke. V (9. 8%) 811 ke. V (90. 2%) From irradiation of Ca. O using fast neutrons 40 Ca(n, a)37 Ar ~16 W/MCi from 2. 6 ke. V X-rays SAGE coll. , PRC 73 (2006) 045805 Used in SAGE with ~0. 4 MCi

90 Sr-90 Y t. Sr = 28. 79 years t. Y = 3. 8

90 Sr-90 Y t. Sr = 28. 79 years t. Y = 3. 8 days 90 Sr Inverse beta decay <E>=2± 0. 2 Me. V <s>=7. 2× 10 -45 cm 2 90 Y 7. 25 kg/MCi ~6700 W/MCi including Bremsstrahlung Product of nuclear fission Used in thermoelectric generators Known technology for 0. 2 MCi sources

106 Ru-106 Rh 106 Ru t. Ru = 539 days t. Rh = days

106 Ru-106 Rh 106 Ru t. Ru = 539 days t. Rh = days Inverse beta decay 106 Rh <E>=2. 5± 0. 2 Me. V <s>=89. 2× 10 -45 cm 2 Product of nuclear fission

Performance of Sources in Borexino Source located at 8. 25 m away from the

Performance of Sources in Borexino Source located at 8. 25 m away from the center of Borexino 3. 3 m FV for neutrinos 4. 25 m FV for anti-neutrinos Source <E> [Me. V] RFV [m] Interaction Losc[m] channel Dm 2=0. 1 e. V 2 Losc[m] Dm 2=1. 5 e. V 2 Nev/MCi Nbackground 51 Cr 0. 71 3. 3 ES 17. 5 1. 2 ~ 200 days ~9700 200 days 37 Ar 0. 81 3. 3 ES 20 1. 3 ~1875 200 days ~7520 200 days 90 Sr-90 Y 0. 86 3. 3 ES 21 1. 4 ~31419 1 year ~14100 1 year 90 Y 2. 0 4. 25 IBD 49 3. 3 ~17596 1 year ~12 1 year 106 Rh 2. 5 4. 25 IBD 61. 8 4. 1 ~156689 1 year ~12 1 year

_ Rate only sensitivity ne 1% source activity accuracy + 1% FV accuracy 90

_ Rate only sensitivity ne 1% source activity accuracy + 1% FV accuracy 90 Sr 1 MCi D=825 cm Reactor anomaly

Rate only sensitivity ne _ D = 825 cm D = 700 cm Dm

Rate only sensitivity ne _ D = 825 cm D = 700 cm Dm 2 ~ 0. 2 e. V 2 and sin 22 q > 0. 05 90 Sr IBD 1 year 1 MCi

Rate only sensitivity ne _ 106 Ru 90 Sr Dm 2 ~ 0. 3

Rate only sensitivity ne _ 106 Ru 90 Sr Dm 2 ~ 0. 3 e. V 2 and sin 22 q > 0. 04 IBD D=825 cm 1 year 1 MCi

51 Cr: sensitivity to ne into ns 1% source activity accuracy + 1% FV

51 Cr: sensitivity to ne into ns 1% source activity accuracy + 1% FV accuracy + spatial resolution effect 51 Cr 5 MCi D=825 cm

Exploit detector performances • Good vertex position reconstruction – ~12 cm/1 Me. V •

Exploit detector performances • Good vertex position reconstruction – ~12 cm/1 Me. V • Determine for each event the source-vertex distance and probe patter of oscillations • Make an example case by Monte. Carlo generation – Use 51 Cr 5 MCi source at 8. 25 m from center of Borexino – Expected rate w/o osc. 6375 events in 200 days – Assume (Dm 2, sin 22 q. SBL) = (2 e. V 2, 0. 15)

Fit waves pattern (Dm 2, sin 22 q. SBL) = (2 e. V 2,

Fit waves pattern (Dm 2, sin 22 q. SBL) = (2 e. V 2, 0. 15) background Not oscillated signal

90 Sr - 3 years - source in the center Kam. LAND bound 52

90 Sr - 3 years - source in the center Kam. LAND bound 52 LNGS, Beyond Three Families - May 4 th, 2011 M. Pallavicini - Dipartimento di Fisica - Università di Genova & INFN

Conclusions • There a number of experimental anomalies/hints which could be explained in the

Conclusions • There a number of experimental anomalies/hints which could be explained in the framework of 3+1 and 3+2 scenarios • Cosmology and BBN could bring important restriction • At present LSND+Mini. Boone anti-neutrino mode gives – Anti-n data: • 0. 007 <~ sin 2(2 qee) <~ 0. 06 at 95% C. L. • 0. 2 <~ Dm 2 <~ 1 at 95% C. L. • An artificial neutrino source experiment in Borexino will – Dm 2 ~ 0. 3 e. V 2 and sin 22 q > 0. 04 outside the detector – Xx inside the detector