Self organizing maps A visualization technique with data

  • Slides: 36
Download presentation
Self organizing maps A visualization technique with data dimension reduction Juan López González University

Self organizing maps A visualization technique with data dimension reduction Juan López González University of Oviedo Inverted CERN School of Computing, 24 -25 February 2014 1 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps General overview § Lecture 1 § Machine learning § Introduction §

Self organizing maps General overview § Lecture 1 § Machine learning § Introduction § Definition § Problems § Techniques 2 § Lecture 2 § § ANN introduction SOM Simulation SOM based models i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps LECTURE 1 Self organizing maps. A visualization technique with data dimension

Self organizing maps LECTURE 1 Self organizing maps. A visualization technique with data dimension reduction. 3 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 1. Artificial neural networks (ANN) 4 i. CSC 2014, Juan López

Self organizing maps 1. Artificial neural networks (ANN) 4 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 1. 1. Introduction 5 i. CSC 2014, Juan López González, University

Self organizing maps 1. 1. Introduction 5 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 1. 2. Types 1. 2. 1. Feedforward NN 1. 2. 2.

Self organizing maps 1. 2. Types 1. 2. 1. Feedforward NN 1. 2. 2. Recurrent NN 1. 2. 3. Self organizing NN 1. 2. 4. Others 6 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 1. 2. 1. Feedforward NN 7 i. CSC 2014, Juan López

Self organizing maps 1. 2. 1. Feedforward NN 7 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 1. 2. 1. Feedforward NN § Single layer feedforward 8 i.

Self organizing maps 1. 2. 1. Feedforward NN § Single layer feedforward 8 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 1. 2. 1. Feedforward NN § Multi-layer feedforward § Supervised learning

Self organizing maps 1. 2. 1. Feedforward NN § Multi-layer feedforward § Supervised learning § Backpropagation learning algorithm 9 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 1. 2. 2. Recurrent neural networks 10 i. CSC 2014, Juan

Self organizing maps 1. 2. 2. Recurrent neural networks 10 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 1. 2. 2. Recurrent neural networks § Elman networks § ‘Context

Self organizing maps 1. 2. 2. Recurrent neural networks § Elman networks § ‘Context units’ § Maintain state 11 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 1. 2. 2. Recurrent neural networks § Hopefield network § Symmetric

Self organizing maps 1. 2. 2. Recurrent neural networks § Hopefield network § Symmetric connections § Associative memory 12 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 1. 2. 2. Recurrent neural networks § Modular neural networks §

Self organizing maps 1. 2. 2. Recurrent neural networks § Modular neural networks § The human brain is not a massive network but a collection of small networks 13 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 1. 2. 3. Self-organizing networks § A set of neurons learn

Self organizing maps 1. 2. 3. Self-organizing networks § A set of neurons learn to map points in an input space to coordinates in an output space 14 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 1. 2. 4. Others § Holographic associative memory § Instantaneously trained

Self organizing maps 1. 2. 4. Others § Holographic associative memory § Instantaneously trained networks § Learning vector quantization § Neuro-fuzzy networks §… 15 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 2. Self-organizing maps 2. 1. Motivation 2. 2. Goal 2. 3.

Self organizing maps 2. Self-organizing maps 2. 1. Motivation 2. 2. Goal 2. 3. Main properties 2. 4. Elements 2. 5. Algorithm 16 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 2. 1. Motivation § Topographic maps § Different sensory inputs (motor,

Self organizing maps 2. 1. Motivation § Topographic maps § Different sensory inputs (motor, visual, auditory…) are mapped in areas of the cerebral cortex in an orderly fashion 17 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 2. 1. Motivation § “The spatial location of an output neuron

Self organizing maps 2. 1. Motivation § “The spatial location of an output neuron in a topographic map corresponds to a particular domain or feature drawn from the input space” Auditory cortical fields Motor-somatotopic maps 18 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 2. 2. Goal § Transform incoming signal of arbitrary dimension into

Self organizing maps 2. 2. Goal § Transform incoming signal of arbitrary dimension into a 1 -2 -3 dimensional discrete map in a topologically ordered fashion 19 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 2. 3. Main properties § Transform continuos input space to discrete

Self organizing maps 2. 3. Main properties § Transform continuos input space to discrete output space § Dimension reduction § winner-takes-all neuron § Ordered feature map Input with similar characteristics produce similar ouput 20 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 2. 3. 1 Dimension reduction § Curse of dimensionality (Richard E.

Self organizing maps 2. 3. 1 Dimension reduction § Curse of dimensionality (Richard E. Bellman) § The amount of data needed grows exponentially with the dimensionality § Types § Feature extraction § Reduce input data (features vector) § Feature selection § Select subset (remove redundant and irrelevant data) 21 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 2. 4. Elements § …of machine learning § A pattern exists

Self organizing maps 2. 4. Elements § …of machine learning § A pattern exists § We don’t know how to solve it mathematically § A lot of data § (a 1, b 1, . . , n 1), (a 2, b 2, . . , n 2) … (a. N, b. N, . . , n. N) 22 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 2. 4. Elements § Lattice of neurons § Size? § Weights

Self organizing maps 2. 4. Elements § Lattice of neurons § Size? § Weights 23 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 2. 4. Elements § Learning rate § Neighborhood function Learning rate

Self organizing maps 2. 4. Elements § Learning rate § Neighborhood function Learning rate function 24 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 2. 5. Algorithm § Initialization § Input data preprocessing § Normalizing

Self organizing maps 2. 5. Algorithm § Initialization § Input data preprocessing § Normalizing § Discrete-continuous variables? § Weight initialization § Random weights 25 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 2. 5. Algorithm (2) § Sampling § Take sample from input

Self organizing maps 2. 5. Algorithm (2) § Sampling § Take sample from input space § Matching § Find BMU: i. e. min of § Update weights § i. e. 26 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 3. Practical exercise 27 i. CSC 2014, Juan López González, University

Self organizing maps 3. Practical exercise 27 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 4. Map examples 4. 1. Digit recognition 4. 2. Finish phonetics

Self organizing maps 4. Map examples 4. 1. Digit recognition 4. 2. Finish phonetics 4. 3. Semantic map of word context 28 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 4. 1. Digit recognition 29 i. CSC 2014, Juan López González,

Self organizing maps 4. 1. Digit recognition 29 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 4. 2. Finnish phonetics 30 i. CSC 2014, Juan López González,

Self organizing maps 4. 2. Finnish phonetics 30 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 4. 3. Semantic map of word context 31 i. CSC 2014,

Self organizing maps 4. 3. Semantic map of word context 31 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 5. Other SOM based models 5. 1. TASOM 5. 2. GSOM

Self organizing maps 5. Other SOM based models 5. 1. TASOM 5. 2. GSOM 5. 3. Mu. SOM 32 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 5. 1. TASOM § Time adaptative self-organizing maps § Deals with

Self organizing maps 5. 1. TASOM § Time adaptative self-organizing maps § Deals with non-stationary input distributions § Adaptative learning rates: n(w, x) § Adaptative neighborhood rates: T(w, x) 33 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 5. 2. GSOM § Growing self-organizing maps § Deals with identifying

Self organizing maps 5. 2. GSOM § Growing self-organizing maps § Deals with identifying sizes for SOMs § Spread factor § New nodes in boundaries § Good when unknown clusters 34 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps 5. 3. Mu. SOM § Multimodal SOM § High level classification

Self organizing maps 5. 3. Mu. SOM § Multimodal SOM § High level classification from sensory integration 35 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps Q&A 36 i. CSC 2014, Juan López González, University of Oviedo

Self organizing maps Q&A 36 i. CSC 2014, Juan López González, University of Oviedo