Complex Quadratic Equation The complex quadratic equation has the form y = f(x) = ± a(x – h)² + k The ±, a, h, and k change the basic graph to create the new complex graph.
Complex Quadratic Equation The complex quadratic equation has the form y = f(x) = ± a(x – h)² + k ± Determines the direction the parabola is facing + graph open upward – graph opens downward
± The difference between the + and -
Complex Quadratic Equation The complex quadratic equation has the form y = f(x) = ± a(x – h)² + k a Determines the width of the graph based on the basic graph y = f(x) = x² 0<a<1 wide graph a>1 narrow graph
a When the a changes the width of the graph changes.
Complex Quadratic Equation The complex quadratic equation has the form y = f(x) = ± a(x – h)² + k h Indicates how much the graph will be moving along the x – axis, the horizontal movement +h moves to the right h units -h moves to the left h units
h What happens when we have a h
Complex Quadratic Equation The complex quadratic equation has the form y = f(x) = ± a(x – h)² + k k Indicates how much the graph will be moving along the y-axis, the vertical movement. +k move up k units -k move down k units
k What happens with a k
Vertex Lowest point (minimum) or the highest point (maximum) of a graph You will have a lowest point if the sign is + You will have a highest point if the sign is - Algebraically defined by the point (h, k) Find the vertex, then determine if the point is a max or min y = -2(x + 3)² - 1