Sampling in Graphs Alexandr Andoni Microsoft Research Graph Slides: 32 Download presentation Sampling in Graphs Alexandr Andoni (Microsoft Research) Graph compression Why smaller graphs? • use less storage space • faster algorithms • easier visualization • Preserve some structure • Cuts • approximately • Other properties: • Distances, (multi-commodity) flows, effective resistances… Plan 1) Cut sparsifiers 2) More efficient cut sparsifiers 3) Node sparsifiers Cut sparsifiers • Approach? [Karger’ 94, ’ 96]: • Concentration • Applying Chernoff bound • Enough? • Smaller size? • Non-uniform sampling [Benczur-Karger’ 96] • Strong connectivity • Connectivity: 5 Strong conn. : 2 Proof of theorem • ii) Cut values are approximated • Iterative sampling • Comments • BREAK Smaller relaxed cut sparsifiers [A-Krauthgamer-Woodruff’ 14]: • Motivating example • Proof of theorem • i) Sketch description • ii) Sketch size • ? ? ? iii) Estimation • Estimation illustration • dense components iii) Correctness of estimation • Variance • Concluding remarks • Open questions •