S Stahl Cryogenic Electronics in Ion Traps Part

  • Slides: 25
Download presentation
S. Stahl: Cryogenic Electronics in Ion Traps Part I Cryogenic Electronics in Ion Traps

S. Stahl: Cryogenic Electronics in Ion Traps Part I Cryogenic Electronics in Ion Traps S. Stahl, CEO Stahl-Electronics

S. Stahl: Cryogenic Electronics in Ion Traps Part I Outline I. Principles of Ion

S. Stahl: Cryogenic Electronics in Ion Traps Part I Outline I. Principles of Ion Traps 1. Penning Traps 2. Paul Traps 3. Kingdon Trap 4. Trap Applications in Science and Industry II. Cryogenic Traps 1. Why Cryogenic ? 2. Precision Measurements in Traps 2. 1 Magnetic Moments 2. 2 Mass Measurements 2. 3 Fundamental Constants III. Non-destructive Particle Detection 1. Why non-destructive detection? 2. How does it work? 3. Sensitivity improvement 4. Resistive Cooling 5. Detection of cold particles IV. Design of Cold Amplifiers 1. Which Semiconductors are suitable? 2. Typical Amplifier Design for Ion Traps 3. Anchoring and Cabling 4. Implemention Examples V. Other Components : Filters, Switches

S. Stahl: Cryogenic Electronics in Ion Traps Part I Principles of Ion Traps 1.

S. Stahl: Cryogenic Electronics in Ion Traps Part I Principles of Ion Traps 1. 2. 3. 4. Penning Trap Paul Trap Kingdon Trap Applications in Science and Industry

S. Stahl: Cryogenic Electronics in Ion Traps Part I 1. Penning Trap Charged Particle

S. Stahl: Cryogenic Electronics in Ion Traps Part I 1. Penning Trap Charged Particle Mass m, Charge q Þ Lorentz-force: radial confinement free cyclotron motion: Þ Electrostatic potential: axial confinement Þ leads to axial oscillation

S. Stahl: Cryogenic Electronics in Ion Traps Part I Implementation: Hyperbolical Trap Magnetic field

S. Stahl: Cryogenic Electronics in Ion Traps Part I Implementation: Hyperbolical Trap Magnetic field =>Advantage: harmonic motion (frequency independent of energy)

S. Stahl: Cryogenic Electronics in Ion Traps Part I Resulting ion motion 3 degrees

S. Stahl: Cryogenic Electronics in Ion Traps Part I Resulting ion motion 3 degrees of freedom: Axial Motion ~1 MHz Energy: 0. . . e. V. . . ke. V Reduced Cyclotron Motion ~10 MHz Magnetron Drift Problem Magnetron-Motion: Inherently unstable ~10 k. Hz

S. Stahl: Cryogenic Electronics in Ion Traps Part I Manipulation of Motions - Excitation:

S. Stahl: Cryogenic Electronics in Ion Traps Part I Manipulation of Motions - Excitation: electric dipole ac fields increase amplitude / radii => applying wz, w+, w- radio frequency field => heating until loss of particles -Cooling: Laser cooling, if optical transition exists ( < Millikelvin) Resistive Cooling ( ~ few Kelvin) Sympathetic Cooling (~ few Kelvin to Millikelvin) -Magnetron Centering Motional Sidebands (w+ + w-, wz + w-), or phase-defined w („Magnetron Cooling“) Rotating Wall (large ion numbers) Lit: Werth, Gheorghe, Major : Charged Particle Traps, published by Springer

S. Stahl: Cryogenic Electronics in Ion Traps Part I Dipole excitation: electric dipole field

S. Stahl: Cryogenic Electronics in Ion Traps Part I Dipole excitation: electric dipole field in z or r-direction

S. Stahl: Cryogenic Electronics in Ion Traps Part I Quadrupole excitation: electric quadrupole field

S. Stahl: Cryogenic Electronics in Ion Traps Part I Quadrupole excitation: electric quadrupole field in r-z direction or radial plane

S. Stahl: Cryogenic Electronics in Ion Traps Part I Rotating Wall drive: A B

S. Stahl: Cryogenic Electronics in Ion Traps Part I Rotating Wall drive: A B 90° degrees phase shifted sine signals D C => rotating electric wall in radial plane centers particles (applies rather for multiparticle/plasma regime) Lit. : X. -P. Huang, F. Anderegg, et al. , Phys. Rev. Lett. 78, 875 (1997) S. Bharadia, M. Vogel, D. M. Segal, R. C. Thompson, Dynamics of laser-cooled Ca+ ions in a Penning trap with a rotating wall; submitted to Applied Physics B

S. Stahl: Cryogenic Electronics in Ion Traps Part I Typical Penning Trap Parameters B

S. Stahl: Cryogenic Electronics in Ion Traps Part I Typical Penning Trap Parameters B 0 = 0. 1 T. . 6 T (typical in science). . . 20 T (heavier particles -> high fields required) U 0 = 2 V. . 200 V (low voltages: patch effect problems) Stored particles: from lightest electrons/positrons, to heaviest organic molecules (e. g. m = 10‘ 000 u) Magnet s storage times normal-conducting 1 sec. . 1 year (cryogenic systems) (water-cooled) number of particles: one to several millions superconducting permanent (up to 2 T)

S. Stahl: Cryogenic Electronics in Ion Traps Part I Penning Trap Variants - classical

S. Stahl: Cryogenic Electronics in Ion Traps Part I Penning Trap Variants - classical hyperpolical electrodes B-field - cubic type trap (chemistry) - 3 pole-Brown-Gabrielse-type trap Laser, Microwaves, Ions, . . . A. Marshall et al. Rev. Mass. Spec. 17, 1 (1998). L. S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986).

S. Stahl: Cryogenic Electronics in Ion Traps Part I Penning Trap: Some Real-world designs

S. Stahl: Cryogenic Electronics in Ion Traps Part I Penning Trap: Some Real-world designs Precision trap for single-ion mass analysis (GSI / Univ. Mainz, Triga) Precision trap for single-ion g-factor determinations (Univ. Mainz) „Shiptrap“ for mass analysis of short-lived isotopes (GSI)

S. Stahl: Cryogenic Electronics in Ion Traps Part I Example Open Endcap Structure: KATRIN-Trap

S. Stahl: Cryogenic Electronics in Ion Traps Part I Example Open Endcap Structure: KATRIN-Trap (commissioning 2009. . 2011) n-Experiment KATRIN, Karlsruhe -large trap (72 mm diam. ), open structure -operated at T = 77 K -„non-precision“ trap

S. Stahl: Cryogenic Electronics in Ion Traps Part I Planar Trap Marzoli et al.

S. Stahl: Cryogenic Electronics in Ion Traps Part I Planar Trap Marzoli et al. Experimental and theoretical challenges for the trapped electron quantum computer J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 154010 (11 pp) Goldman and Gabrielse: Optimized planar Penning traps for quantum-information studies Phys. Rev. A 81, 052335 (2010)

S. Stahl: Cryogenic Electronics in Ion Traps Part I Planar Trap: Easy Access for

S. Stahl: Cryogenic Electronics in Ion Traps Part I Planar Trap: Easy Access for Photons and Scalability Open structure allows easy access with Lasers, Microwaves etc. “ 100 traps on 1 Euro“ Interesting for Quantum Computing, for Mass Analysis, etc.

S. Stahl: Cryogenic Electronics in Ion Traps Part I Planar Traps: Implementation approaches •

S. Stahl: Cryogenic Electronics in Ion Traps Part I Planar Traps: Implementation approaches • Multiple ring electrode structures • multi-layer PCB • on board filters • easy fabrication • structures > 100. . 150 µm Schmidt-Kaler et al. QUELE-Project

S. Stahl: Cryogenic Electronics in Ion Traps Part I 2. Paul Traps / Quadrupole

S. Stahl: Cryogenic Electronics in Ion Traps Part I 2. Paul Traps / Quadrupole Ion Traps metallic electrodes Þ Resulting macromotion in a pseudo potential of a few e. V => 3 D confinement - No magnetic field needed - high (1 k. V) AC fields needed - problem RF-heating => cooling technique needed (like: buffer gas cooling, strong laser cooling)

S. Stahl: Cryogenic Electronics in Ion Traps Part I Paul Traps: Many different shapes

S. Stahl: Cryogenic Electronics in Ion Traps Part I Paul Traps: Many different shapes exist simple ring (ground around is second electrode) hyperbolic shape Paul-Straubel-Type Trapped particles Quadrupolar Rods

S. Stahl: Cryogenic Electronics in Ion Traps Part I 3. Kingdon Trap modern variant:

S. Stahl: Cryogenic Electronics in Ion Traps Part I 3. Kingdon Trap modern variant: Orbitrap Pure Electrostatic Trap => no (expensive) magnet needed Advantage: very simple Disadvantage: Short Storage Times Improved version, Longer Storage time Important tool in analytical mass spectrometry Lit: Blümel, R (1995). "Dynamic Kingdon trap". Physical Review A 51 (1): R 30–R 33. doi: 10. 1103/Phys. Rev. A. 51. R 30 Hu, Noll, Li, Makarov, Hardman, Graham Cooks R (2005): "The Orbitrap: a new mass spectrometer". Journal of mass spectrometry : JMS 40 (4): 430– 43. doi: 10. 1002/jms. 856

S. Stahl: Cryogenic Electronics in Ion Traps Part I 4. Trap Applications in Science

S. Stahl: Cryogenic Electronics in Ion Traps Part I 4. Trap Applications in Science and Industry: Mass Analysis in Chemistry, Biology, Environmental Analytics -Paul Traps / Mass Filters -Penning Traps (specially FT-ICR-Traps) Science / Fundamental Research: -Paul Traps Quantum Optics, Frequency Standards, Atomic Physics, . . . -Penning Traps Fundamental constants, Laser-spectroscopy, g-factor mass references and. . . Lit: Werth, Gheorghe, Major : Charged Particle Traps, published by Springer

S. Stahl: Cryogenic Electronics in Ion Traps Part I Mass Measurements in Penning Traps

S. Stahl: Cryogenic Electronics in Ion Traps Part I Mass Measurements in Penning Traps Courtesy Klaus Blaum

S. Stahl: Cryogenic Electronics in Ion Traps Part I - End of part I

S. Stahl: Cryogenic Electronics in Ion Traps Part I - End of part I -

S. Stahl: Cryogenic Electronics in Ion Traps Part I Thanks for your attention

S. Stahl: Cryogenic Electronics in Ion Traps Part I Thanks for your attention

S. Stahl: Cryogenic Electronics in Ion Traps Part I g-factor setup Mainz: vertical 4

S. Stahl: Cryogenic Electronics in Ion Traps Part I g-factor setup Mainz: vertical 4 Kdewar setup (g-factor, Mainz) 4 K-electronics section 4 K-axial amplifier g-factor trap 4 K-broadband FT-ICR amplifier ( Mainz 2004 )