Rolling Tachyon and Vacuum Super String Field Theory






























- Slides: 30
Rolling Tachyon and Vacuum Super. String Field Theory I. Ya. Aref'eva Steklov Mathematical Institute Based on : I. A. , D. Belov, A. Giryavets, A. Koshelev, hep-th/0112214, hep-th/0201197, hep-th/0203227, hep-th/0204239 and
OUTLOOK • Cubic SSFT action • Tachyon Condensation in SSFT • Rolling Tachyon i) Field theory (anharmonic oscillator) ii) corrections iii) p-adic strings iv) SFT • Vacuum Super. String Field Theory i) New BRST charge ii) Special solutions - sliver, lump, etc. : algebraic; surface states; Moyal representation iii) Time dependence • Conclusion
Tachyon Condensation in SFT • Bosonic String - Tachyon • Tachyon Condensation in SFT V • Level truncation Kostelecky, Samuel (1989) • Tachyon in GSO ( - ) sector of NS string
String Field Theory on a non-BPS brane I. A. , Belov, Koshelev, Medvedev(2001) E. Witten (1986) Parity odd even GSO + - I. A. , Medvedev, Zubarev (1990) Preitschopf, Thorn, Yost (1990)
Vertex operators in pictures – 1 and 0 Level GSO 0 1/2 1 3/2 2 + + + Name Picture -1 u t r s Picture 0 - Berkovits (1995) N. B. , Sen, Zwiebach (2000) I. A. , Belov, Koshelev, P. M. (2001)
Tachyon Condensation in SSFT
FAQ: A. : cubic Auxiliary fields u, t fields unbounded
Sen’s conjecture (1999) Vacuum Energy = Brane Tension Strings Branes SFT
Sen’s conjectures (1999) 97. 5% = Our calculations: 105. 8% NO OPEN STRING EXCITATIONS CLOSED STRING EXCITATIONS
Rolling Tachyon • • • Anharmonic oscillator Alpha ‘ corrections p-adic strings SFT (for bosonic string Sen, hep-th/0203211) SSFT for non-BPS branes
Anharmonic oscillator If resonance i. e.
Rolling Tachyon Two regimes: Initial condition near the top Initial condition near the bottom
Rolling Tachyon (bosonic case) Initial condition near the top Initial condition near the bottom
Alpha ‘ corrections (boson case) • First order Solutions
Alpha ‘ corrections (non-BPS case) • First order Solutions
Solutions to SFT E. O. M. Siegel gauge Usual pert. theory = -- + Resonance + … Sen, hepth/020715 Problems!!!
Solutions to SSFT E. O. M. NS sector No picture changing operator Problems!!! defines the fold AMZ, 1990
NO OPEN STRING EXCITATIONS VSFT
Vacuum String Field Theory on a non-BPS brane I. A. , Belov, Giryavets (2002)
Structure of new Q solution to E. O. M SFT in the background field Ohmori
Tests Solution to VSFT E. O. M
E. O. M. Analog of Noncommutative Soliton in Strong Coupling Limit Gopakumar, Minwalla, Strominger
Methods of solving • Algebraic method • Surface states method • Moyal representation • Half-strings I. Bars, M. Douglas, G. Moore
Algebraic Method Identities for squeezed states Bosonic sliver Rastelli, Sen, Zwiebach; Kostelecky, Potting. . . I. A. , Giryavets, Medvedev; Marino, Schiappa
Twisted Super. Sliver • Superghost twisted sliver equation • Sliver with insertion • Picture changing
Sliver in the Moyal representation Identity Sliver
Conclusion • What we know • What we get • Open problems
What we have got in cubic SSFT Tachyon condensation Rolling tachyon near the top Vacuum SSFT and some solutions
What we know SFT proposes a hard, but a surmountable way to get answers concerning non-perturbative phenomena Two sets of basis: i) related with spectrum of free string ii) related with "strong coupling “ regime (may be suitable for study VSFT)
Open Problems More tests for checking validity of VSSFT Other solutions (lump, kink solutions); especially with time dependence Use the Moyal basis to construct the tachyon condensate and other solutions Classification of projectors in open string field algebra and its physical meaning Closed string excitations in VSSFT