Roadmap of Trajectory Modeling 2020 07 21 Contents

  • Slides: 34
Download presentation
研究生学术交流 Roadmap of Trajectory Modeling 2020. 07. 21 刘天禹

研究生学术交流 Roadmap of Trajectory Modeling 2020. 07. 21 刘天禹

Contents 1. Datasets 2. Roadmap & Tasks of Autonomous Driving a) Object Detection from

Contents 1. Datasets 2. Roadmap & Tasks of Autonomous Driving a) Object Detection from Point Clouds b) Motion Forecasting c) Interaction Modeling 3. Future Works 4. Sp. GNN:Spatially-Aware Graph Neural Networks for Relational Behavior Forecasting from Sensor Data

2. Roadmap 特征 Activity RGB Signal/Sig n Li. DAR FOT Object Locations Depth Feature

2. Roadmap 特征 Activity RGB Signal/Sig n Li. DAR FOT Object Locations Depth Feature 地� Motion 其他 模 态 深度 可�光 低级 高级 HD-MAP 麦克� �列 IMU/GP S Ego-car Speed

2. Roadmap 低级 高级 特征 Activity RGB Signal Detection Depth Estimation Li. DAR Depth

2. Roadmap 低级 高级 特征 Activity RGB Signal Detection Depth Estimation Li. DAR Depth Feature Voxelization Featurization FOT Map Automation 地� 其他 模 态 深度 可�光 Activity Recognition 麦克� �列 IMU/GP S Signal/Sig n Object Detection Direct Detection Cloud Detection Object Locations Conditional Forecasting Trajectory Modeling Interaction Modeling HD-MAP Activity Prediction Motion Forecasting Ego-car Speed

2 a. Object Detection From Point Cloud 低级 高级 特征 Activity RGB Signal Detection

2 a. Object Detection From Point Cloud 低级 高级 特征 Activity RGB Signal Detection Depth Estimation Li. DAR Depth Feature Voxelization Featurization FOT Map Automation 地� 其他 模 态 深度 可�光 Activity Recognition 麦克� �列 IMU/GP S Signal/Sig n Object Detection Direct Detection Cloud Detection Object Locations Conditional Forecasting Trajectory Modeling Interaction Modeling HD-MAP Activity Prediction Motion Forecasting Ego-car Speed

2 a. Object Detection From Point Cloud 1. Rasterization / Voxelization / Featurization •

2 a. Object Detection From Point Cloud 1. Rasterization / Voxelization / Featurization • 原始特征点集不同 [1 ] • 整理为维度不变的特征向量 (Permutation Invariant) [1]. Ngiam, Jiquan, et al. "Starnet: Targeted computation for object detection in point clouds. " ar. Xiv preprint ar. Xiv: 1908. 11069 (2019). [2]. Qi, Charles R. , et al. "Pointnet: Deep learning on point sets for 3 d classification and segmentation. " Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. [3]. Qi, Charles Ruizhongtai, et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space. " Advances in neural information processing systems. 2017.

2 a. Object Detection From Point Cloud 1. Rasterization / Voxelization / Featurizer •

2 a. Object Detection From Point Cloud 1. Rasterization / Voxelization / Featurizer • 原始特征点集不同 • 整理为维度不变的特征向量 (Permutation Invariant) 2. 直接预测[1][2] [1]. Wang, Shenlong, et al. "Deep parametric continuous convolutional neural networks. " Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. [2]. Zaheer, Manzil, et al. "Deep sets. " Advances in neural information processing systems. 2017. [1 ]

2 a. Object Detection From Point Cloud 1. 3 D-CNN [1 ] [1]. Engelcke,

2 a. Object Detection From Point Cloud 1. 3 D-CNN [1 ] [1]. Engelcke, Martin, et al. "Vote 3 deep: Fast object detection in 3 d point clouds using efficient convolutional neural networks. " 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017. [2]. Li, Bo. "3 d fully convolutional network for vehicle detection in point cloud. " 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017.

2 a. Object Detection From Point Cloud 1. 3 D-CNN [1 ] 2. (2+1)D-CNN

2 a. Object Detection From Point Cloud 1. 3 D-CNN [1 ] 2. (2+1)D-CNN [1]. Luo, Wenjie, Bin Yang, and Raquel Urtasun. "Fast and furious: Real time end-to-end 3 d detection, tracking and motion forecasting with a single convolutional net. " Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2018.

2 a. Object Detection From Point Cloud 1. 3 D-CNN [1 ] [3 ]

2 a. Object Detection From Point Cloud 1. 3 D-CNN [1 ] [3 ] 2. (2+1)D-CNN 3. Front-view Projection [1]. Li, Bo, Tianlei Zhang, and Tian Xia. "Vehicle detection from 3 d lidar using fully convolutional network. " ar. Xiv preprint ar. Xiv: 1608. 07916 (2016). [2]. Chen, Xiaozhi, et al. "Multi-view 3 d object detection network for autonomous driving. " Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017. [3]. Meyer, Gregory P. , et al. "Lasernet: An efficient probabilistic 3 d object detector for autonomous driving. " Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

2 a. Object Detection From Point Cloud 1. 3 D-CNN [1 ] 2. (2+1)D-CNN

2 a. Object Detection From Point Cloud 1. 3 D-CNN [1 ] 2. (2+1)D-CNN 3. Front-view Projection 4. 2 D BEV (Bird’s eye view) [1]. Yang, Bin, Wenjie Luo, and Raquel Urtasun. "Pixor: Real-time 3 d object detection from point clouds. " Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2018. [2]. Yang, Bin, Ming Liang, and Raquel Urtasun. "Hdnet: Exploiting hd maps for 3 d object detection. " Conference on Robot Learning. 2018. [3]. Yang, Zetong, et al. "Std: Sparse-to-dense 3 d object detector for point cloud. " Proceedings of the IEEE International Conference on Computer Vision. 2019. [4]. Liang, Ming, et al. "Multi-task multi-sensor fusion for 3 d object detection. " Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

2 b. Motion Forecasting 低级 高级 特征 Activity RGB Signal Detection Depth Estimation Li.

2 b. Motion Forecasting 低级 高级 特征 Activity RGB Signal Detection Depth Estimation Li. DAR Depth Feature Voxelization Featurization FOT Map Automation 地� 其他 模 态 深度 可�光 Activity Recognition 麦克� �列 IMS/GP S Signal/Sig n Object Detection Direct Detection Cloud Detection Object Locations Conditional Forecasting Trajectory Modeling Interaction Modeling HD-MAP Activity Prediction Motion Forecasting Ego-car Speed

2 b. Motion Forecasting 1. DESIRE[1] [1]. Lee, Namhoon, et al. "Desire: Distant future

2 b. Motion Forecasting 1. DESIRE[1] [1]. Lee, Namhoon, et al. "Desire: Distant future prediction in dynamic scenes with interacting agents. " Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.

2 b. Motion Forecasting 1. DESIRE[1] [2 ] 2. R 2 P 2 [2]

2 b. Motion Forecasting 1. DESIRE[1] [2 ] 2. R 2 P 2 [2] [1]. Lee, Namhoon, et al. "Desire: Distant future prediction in dynamic scenes with interacting agents. " Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017. [2]. Rhinehart, Nicholas, Kris M. Kitani, and Paul Vernaza. "R 2 p 2: A reparameterized pushforward policy for diverse, precise generative path forecasting. " Proceedings of the European Conference on Computer Vision (ECCV). 2018.

2 b. Motion Forecasting 1. DESIRE[1] [3 ] 2. R 2 P 2 [2]

2 b. Motion Forecasting 1. DESIRE[1] [3 ] 2. R 2 P 2 [2] 3. SIMP [3] [1]. Lee, Namhoon, et al. "Desire: Distant future prediction in dynamic scenes with interacting agents. " Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017. [2]. Rhinehart, Nicholas, Kris M. Kitani, and Paul Vernaza. "R 2 p 2: A reparameterized pushforward policy for diverse, precise generative path forecasting. " Proceedings of the European Conference on Computer Vision (ECCV). 2018. [3]. Hu, Yeping, Wei Zhan, and Masayoshi Tomizuka. "Probabilistic prediction of vehicle semantic intention and motion. " 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018.

2 c. Interaction Modeling 低级 高级 特征 Activity RGB Signal Detection Depth Estimation Li.

2 c. Interaction Modeling 低级 高级 特征 Activity RGB Signal Detection Depth Estimation Li. DAR Depth Feature Voxelization Featurization FOT Map Automation 地� 其他 模 态 深度 可�光 Activity Recognition 麦克� �列 IMS/GP S Signal/Sig n Object Detection Direct Detection Cloud Detection Object Locations Conditional Forecasting Trajectory Modeling Interaction Modeling HD-MAP Activity Prediction Motion Forecasting Ego-car Speed

2 c. Interaction Modeling 1. Game Theory[1] [1]. Ma, Wei-Chiu, et al. "Forecasting interactive

2 c. Interaction Modeling 1. Game Theory[1] [1]. Ma, Wei-Chiu, et al. "Forecasting interactive dynamics of pedestrians with fictitious play. " Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017. [3 ]

2 c. Interaction Modeling 1. Game Theory [2 ] [1 ] 2. LSTMs [1]

2 c. Interaction Modeling 1. Game Theory [2 ] [1 ] 2. LSTMs [1] [2] [3 ] [1]. Alahi, Alexandre, et al. "Social lstm: Human trajectory prediction in crowded spaces. " Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. [2]. Zhao, Tianyang, et al. "Multi-agent tensor fusion for contextual trajectory prediction. " Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. [3]. Gupta, Agrim, et al. "Social gan: Socially acceptable trajectories with generative adversarial networks. " Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

2 c. Interaction Modeling 1. DESIRE 2. LSTMs 3. GNN [1]. Casas, Sergio, et

2 c. Interaction Modeling 1. DESIRE 2. LSTMs 3. GNN [1]. Casas, Sergio, et al. "Spatially-aware graph neural networks for relational behavior forecasting from sensor data. " ar. Xiv preprint ar. Xiv: 1910. 08233 (2019). [1 ]

2 c. Interaction Modeling 1. DESIRE[1] 2. LSTMs 3. GNN 4. Attention [3] [1].

2 c. Interaction Modeling 1. DESIRE[1] 2. LSTMs 3. GNN 4. Attention [3] [1]. Sadeghian, Amir, et al. "Car-net: Clairvoyant attentive recurrent network. " Proceedings of the European Conference on Computer Vision (ECCV). 2018. [1 ]

2 c. Interaction Modeling [1 ] And More [3 ] [1]. Santoro, Adam, et

2 c. Interaction Modeling [1 ] And More [3 ] [1]. Santoro, Adam, et al. "A simple neural network module for relational reasoning. " Advances in neural information processing systems. 2017. [2]. Sun, Chen, et al. "Actor-centric relation network. " Proceedings of the European Conference on Computer Vision (ECCV). 2018. [3]. Sun, Chen, et al. "Relational action forecasting. " Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. [2 ]

3. Possible Future Works 低级 高级 特征 Activity RGB Signal Detection Depth Estimation Li.

3. Possible Future Works 低级 高级 特征 Activity RGB Signal Detection Depth Estimation Li. DAR Depth Feature Voxelization Featurization FOT Map Automation 地� 其他 模 态 深度 可�光 Activity Recognition 麦克� �列 IMS/GP S Signal/Sig n Object Detection Direct Detection Cloud Detection Activity Prediction Object Locations Conditional Forecasting Trajectory Modeling Interaction Modeling HD-MAP Multi-Model Interaction Modeling Ego-car Speed Event-Based Interaction Modeling Motion Forecasting

4. Spatially-Aware Graph Neural Networks [1 ] [1]. Casas, Sergio, et al. "Spatially-aware graph

4. Spatially-Aware Graph Neural Networks [1 ] [1]. Casas, Sergio, et al. "Spatially-aware graph neural networks for relational behavior forecasting from sensor data. " ar. Xiv preprint ar. Xiv: 1910. 08233 (2019).

4. Spatially-Aware Graph Neural Networks Gaussian MRFs & Gaussian Belief Propagation [1 ] [1].

4. Spatially-Aware Graph Neural Networks Gaussian MRFs & Gaussian Belief Propagation [1 ] [1]. Casas, Sergio, et al. "Spatially-aware graph neural networks for relational behavior forecasting from sensor data. " ar. Xiv preprint ar. Xiv: 1910. 08233 (2019).

4. Spatially-Aware Graph Neural Networks Gaussian MRFs & Gaussian Belief Propagation [1 ] [1].

4. Spatially-Aware Graph Neural Networks Gaussian MRFs & Gaussian Belief Propagation [1 ] [1]. Casas, Sergio, et al. "Spatially-aware graph neural networks for relational behavior forecasting from sensor data. " ar. Xiv preprint ar. Xiv: 1910. 08233 (2019).

4. Spatially-Aware Graph Neural Networks Gaussian MRFs & Gaussian Belief Propagation [1 ] Belief

4. Spatially-Aware Graph Neural Networks Gaussian MRFs & Gaussian Belief Propagation [1 ] Belief Propagation Marginal Distribution [1]. Casas, Sergio, et al. "Spatially-aware graph neural networks for relational behavior forecasting from sensor data. " ar. Xiv preprint ar. Xiv: 1910. 08233 (2019).

4. Spatially-Aware Graph Neural Networks [1 ] Graph Neural Networks(State Update) 迭代更新 1. Hidden

4. Spatially-Aware Graph Neural Networks [1 ] Graph Neural Networks(State Update) 迭代更新 1. Hidden State (Extracted ROI) 2. Node State (Statistics of Marginal Distribution) 分布 [1]. Casas, Sergio, et al. "Spatially-aware graph neural networks for relational behavior forecasting from sensor data. " ar. Xiv preprint ar. Xiv: 1910. 08233 (2019).

4. Spatially-Aware Graph Neural Networks [1 ] Message Passing MLP*3 State Update GRU MLP*2

4. Spatially-Aware Graph Neural Networks [1 ] Message Passing MLP*3 State Update GRU MLP*2 [1]. Casas, Sergio, et al. "Spatially-aware graph neural networks for relational behavior forecasting from sensor data. " ar. Xiv preprint ar. Xiv: 1910. 08233 (2019).

4. Spatially-Aware Graph Neural Networks Ga. BP Belief Propogation State Update [1 ] GNN

4. Spatially-Aware Graph Neural Networks Ga. BP Belief Propogation State Update [1 ] GNN Message Passing State Update [1]. Casas, Sergio, et al. "Spatially-aware graph neural networks for relational behavior forecasting from sensor data. " ar. Xiv preprint ar. Xiv: 1910. 08233 (2019).

4. Spatially-Aware Graph Neural Networks [1 ] Training Results [1]. Casas, Sergio, et al.

4. Spatially-Aware Graph Neural Networks [1 ] Training Results [1]. Casas, Sergio, et al. "Spatially-aware graph neural networks for relational behavior forecasting from sensor data. " ar. Xiv preprint ar. Xiv: 1910. 08233 (2019).

References [1]. Ngiam, Jiquan, et al. "Starnet: Targeted computation for object detection in point

References [1]. Ngiam, Jiquan, et al. "Starnet: Targeted computation for object detection in point clouds. " ar. Xiv preprint ar. Xiv: 1908. 11069 (2019). [2]. Qi, Charles R. , et al. "Pointnet: Deep learning on point sets for 3 d classification and segmentation. " Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. [3]. Qi, Charles Ruizhongtai, et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space. " Advances in neural information processing systems. 2017. [4]. Wang, Shenlong, et al. "Deep parametric continuous convolutional neural networks. " Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. [5]. Zaheer, Manzil, et al. "Deep sets. " Advances in neural information processing systems. 2017. [6]. Engelcke, Martin, et al. "Vote 3 deep: Fast object detection in 3 d point clouds using efficient convolutional neural networks. " 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017. [7]. Li, Bo. "3 d fully convolutional network for vehicle detection in point cloud. " 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017. [8]. Luo, Wenjie, Bin Yang, and Raquel Urtasun. "Fast and furious: Real time end-to-end 3 d detection, tracking and motion forecasting with a single convolutional net. " Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2018. [9]. Li, Bo, Tianlei Zhang, and Tian Xia. "Vehicle detection from 3 d lidar using fully convolutional network. " ar. Xiv preprint ar. Xiv: 1608. 07916 (2016). [10]. Chen, Xiaozhi, et al. "Multi-view 3 d object detection network for autonomous driving. " Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017. [11]. Meyer, Gregory P. , et al. "Lasernet: An efficient probabilistic 3 d object detector for autonomous driving. " Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. [12]. Yang, Bin, Wenjie Luo, and Raquel Urtasun. "Pixor: Real-time 3 d object detection from point clouds. " Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2018. [13]. Yang, Bin, Ming Liang, and Raquel Urtasun. "Hdnet: Exploiting hd maps for 3 d object detection. " Conference on Robot Learning. 2018. [14]. Yang, Zetong, et al. "Std: Sparse-to-dense 3 d object detector for point cloud. " Proceedings of the IEEE International Conference on Computer Vision. 2019.

References [15]. Liang, Ming, et al. "Multi-task multi-sensor fusion for 3 d object detection.

References [15]. Liang, Ming, et al. "Multi-task multi-sensor fusion for 3 d object detection. " Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. [16]. Lee, Namhoon, et al. "Desire: Distant future prediction in dynamic scenes with interacting agents. " Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017. [17]. Rhinehart, Nicholas, Kris M. Kitani, and Paul Vernaza. "R 2 p 2: A reparameterized pushforward policy for diverse, precise generative path forecasting. " Proceedings of the European Conference on Computer Vision (ECCV). 2018. [18]. Hu, Yeping, Wei Zhan, and Masayoshi Tomizuka. "Probabilistic prediction of vehicle semantic intention and motion. " 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018. [19]. Ma, Wei-Chiu, et al. "Forecasting interactive dynamics of pedestrians with fictitious play. " Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017. [20]. Alahi, Alexandre, et al. "Social lstm: Human trajectory prediction in crowded spaces. " Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. [21]. Zhao, Tianyang, et al. "Multi-agent tensor fusion for contextual trajectory prediction. " Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. [22]. Gupta, Agrim, et al. "Social gan: Socially acceptable trajectories with generative adversarial networks. " Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. [23]. Casas, Sergio, et al. "Spatially-aware graph neural networks for relational behavior forecasting from sensor data. " ar. Xiv preprint ar. Xiv: 1910. 08233 (2019). [24]. Sadeghian, Amir, et al. "Car-net: Clairvoyant attentive recurrent network. " Proceedings of the European Conference on Computer Vision (ECCV). 2018. [25]. Santoro, Adam, et al. "A simple neural network module for relational reasoning. " Advances in neural information processing systems. 2017. [26]. Sun, Chen, et al. "Actor-centric relation network. " Proceedings of the European Conference on Computer Vision (ECCV). 2018. [27]. Sun, Chen, et al. "Relational action forecasting. " Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

Q & A 2020. 07. 21 刘天禹

Q & A 2020. 07. 21 刘天禹