Riunione di fisica applicata a Bologna Innanzitutto grazie

  • Slides: 22
Download presentation
Riunione di fisica applicata a Bologna Innanzitutto grazie di essere qui Fisica applicata a

Riunione di fisica applicata a Bologna Innanzitutto grazie di essere qui Fisica applicata a Bologna ha diverse realtà scopo di questa riunione: q Conoscersi meglio come persone e soprattutto conoscere meglio le aree di ricerca q Sarebbe bello sentirsi parte di una unità (ovviamente mantenendo le proprie attività) q Magari in futuro potremo partecipare insieme a qualche ricerca Le persone coinvolte : q area fisica medica (ora o in passato) q Area di fisica nucleare Settore fortemente in espansione, anche il numero di studenti interessati alle nostre tesi lo dimostrano R. Spighi: Riunione di Bologna 1

FOOT experiment approved by the INFN CSN 3 on September 2017 (CSN 3) Under

FOOT experiment approved by the INFN CSN 3 on September 2017 (CSN 3) Under construction Physical data taking in 2020 INFN sections/labs: Milano Torino Trento q q Bologna Pisa 101 members (60% staff): q Perugia q Roma 1 -2 Frascati q Napoli 10 INFN Sections 5 laboratories: Frascati, CNAO, Trento, GSI, IPHC (Strasbourg) 12 Italian Universities 2 foreign Universities: Aachen, Nagoya Centro Fermi Physics program: q q Hadrontherapy: q Nuclear fragmentation @ 200 Me. V/u Radioprotection in Space: q Nuclear fragmentation @ 700 Me. V/u R. Spighi: Riunione di Bologna 2

Gamma q q q Relative dose Hadrontherapy vs Radiotherapy Photoelectric (~Z 4/E 3) Compton

Gamma q q q Relative dose Hadrontherapy vs Radiotherapy Photoelectric (~Z 4/E 3) Compton (~Z/E) Pair prod (~Z 2/ln. E) C-Ion 254 Me. V C-Ion 300 Me. V Bragg Peak Proton/charged ion q q Proton 135 Me. V q q Photon 18 Me. V Ionization Excitation Bremsstrahlung Fragmentation Radiotherapy, IMRT 7 fields γ 60 Co γ 120 Ke. V Pros and cons q q q Depth in water (cm) dose release maximum at the end Penetration depends on energy Hadron > efficient than γ Hadron < damage outside tumor MORE expensive than γ R. Spighi: Riunione di Bologna Hadrontherapy, proton 3

Hadrontherapy in the world patients Fast expansion in the last 50 years facilities From

Hadrontherapy in the world patients Fast expansion in the last 50 years facilities From 2010: 10000 patients/year Facility (end of 2016): q Operative 70 q 61 proton q 5 protons and Carbon q 4 Carbon Treated patients (end 2016): q 174512 q 149345 with p (in USA 64516) q 21580 with 12 C (in Japan 17331) q The remnants other particles Italy: 18/3/2017 hadrontherapy in LEA (Livelli Essenziali di Assistenza) CATANA (LNS) CNAO (Pavia) Centers in Europe (2015) Proton therapy Center Trento 4

To be studied on hadrontherapy EM and nuclear interactions beam t n o t

To be studied on hadrontherapy EM and nuclear interactions beam t n o t o Pr p th H, C, O (95%) p + C, O target fragments low Energy low range Target fragmentation era py C + H projectile fragments Projectile fragmentation High Energy Long range C beam 400 Me. V/c Target fragmentation No fragmentation FOOT goals Ion C y ap r e h p + H both projectile fragmentation R. Spighi: Riunione di Bologna Tail present only when using Carbon 5

C, O at rest Target fragmentation p + C, O fragments (remain in target)

C, O at rest Target fragmentation p + C, O fragments (remain in target) proton Target (2 mm) Impossible to detect fragments C et g r ta H a se INVERSE KINEMATIC Proton (H) at rest C, O 200 Me. V/A u o t lt C, O + p fragments u c i f Dif A the end Lorentz boost R. Spighi: Riunione di Bologna C 2 H 4 Target fragmentation q dσ/d. E 5% in inverse kinematics Projectile fragmentation q same but in direct kinematics 6

FOOT Detector (in construction) Electronic Setup n, p, D, T, He Calorimeter BGO Magnets

FOOT Detector (in construction) Electronic Setup n, p, D, T, He Calorimeter BGO Magnets Beam Monitor Target ts n e m g 0° ra 1 f ± vy Start Counter a n e e p H o ar l Pre-target region gu n A Ligh t fr agm ent Ang s ular ope n± 70° Tracker Silicon Strip 1 m Tracker Silicon Pixel ΔE-TOF scintillator downstream region Tracking region 10 cm Section 1 vertexing Section 2 Charge Id Section 3 momentum Emulsion Chamber Setup R. Spighi: Riunione di Bologna 300 μm Emulsion layer 1 mm Emulsion layer C or C 2 H 4 1 mm Pb layer 7

Pre target region SC FOOT BM . . . . …. . … .

Pre target region SC FOOT BM . . . . …. . … . . Start Counter (SC) . . . . Beam monitor (BM) Beam momentum/direction & fragmentation in SC Trigger and To. F start R. Spighi: Riunione di Bologna 8

Tracking region VTX FOOT. . . . MSD ITR . . …. . …

Tracking region VTX FOOT. . . . MSD ITR . . …. . … . . . Vertex & Inner Tracker VTX: 4 layers of Si pixel (20 x 20 μm) ITR: 2 layers of Si pixel (20 x 20 μm) B Magnet R. Spighi: Riunione di Bologna Micro Strip Detector (MSD) x on a Z: be ecti r i d m 2 permanent magnets Hallbach geometry B field in y direction (max 0. 8 T) MSD: 3 layers of Si strips (120 μm x 9 cm) 9

SCN CAL FOOT. . . . …. . … . . downstream region .

SCN CAL FOOT. . . . …. . … . . downstream region . . . . 3 c Calorimeter (CAL) m 24 cm Scintillator (SCN) 2 c m 40 x 2 cm plastic scintillator bars 3 mm thickness 2 layers of 20 bars Silicon Photo. Multiplier (Si. PM) BGO – (Bi 4 Ge 3 O 12) Inorganic scintillator ZBi = 83 ΡBGO = 7. 13 g/cm 3 Weight = 1. 027 kg Total weight 330 Kg Si. PM Pitch 50 μm Voltage breakdown 53 V ΔE-Tof R. Spighi: Riunione di Bologna 10

Performances: charge Z reconstruction Fluka simulation 16 O (200 Me. V/u) C 2 H

Performances: charge Z reconstruction Fluka simulation 16 O (200 Me. V/u) C 2 H 4 Fragment univocally defined by Z and A SCN TOF energy deposited in SCN . . FOOT …. . … . . . reconstructed Z 4 He 7 Li 9 Be 11 B 12 C 14 N 16 O 2 3 4 5 6 7 8 2. 01± 0. 06 3. 03± 0. 08 4. 05± 0. 09 5. 06± 0. 10 6. 09± 0. 12 7. 11± 0. 14 8. 15± 0. 15 Z Resolution heavy fragments : 2 -3% wrong charge assignment < 1% R. Spighi: Riunione di Bologna 11

Performances: Number of mass A (ex of 12 C) Fluka simul 16 O (200

Performances: Number of mass A (ex of 12 C) Fluka simul 16 O (200 Me. V/u) C 2 H 4 REDUNDANT Detector different ways to determine A TOF & TRACKER TOF & CALO 12. 4 ± 1. 2 11. 97 ± 0. 45 12. 14 ± 0. 53 ALM FIT Methods: q Standard χ2 q Augmented Lagrangian (ALM) TRACKER & CALO ALM χ2<5 χ2 12. 01 ± 0. 41 A R. Spighi: Riunione di Bologna Fit cut the wrong reconstructed fragments 12

Simulation by Fluka 12 C A = 12. 0 ± 0. 4 FOOT Performances:

Simulation by Fluka 12 C A = 12. 0 ± 0. 4 FOOT Performances: Number of mass Conservative Resolutions q Δp/p 4% q ΔEkin/Ekin 1. 5% q Δtof 70 – 140 ps q Δ(d. E)/d. E 3 -10% 16 O (200 Me. V/u) C Resolutions from Test Beam q Δp/p 4% q ΔEkin/Ekin 1. 0% q Δtof 50 – 100 ps q Δ(d. E)/d. E 3 -10% 12 C 11 C 12 C 13 C 10 C 11 C 13 C 14 C 10 C Possibility to disentangle isotopes Mass Resolution ~ 3 -4% R. Spighi: Riunione di Bologna 2 H 4 13 14 C

Mars mission: radio protection in space Mars: NO magnetosphere and very thin atmosphere Period

Mars mission: radio protection in space Mars: NO magnetosphere and very thin atmosphere Period 1 year no protection from GCR and SPE Radiation: q Travel: 1. 8 m. Sv/day (GCR + SPE) q On Mars: 0. 64 m. Sv/day q Period 1. 9 year ~ 1 Sv (increase the cancer probability of ~3%) On earth: 2. 64 m. Sv/year Solar Minimum <Travel time> ~ 270 days Durante & Cucinotta, Nature Rev. Cancer (2008) Maximum shielding is needed (interaction on it? ) 90% of particles are proton (9% 4 He, …) GCR (Galactic Cosmic Rays) Large Intersection with the hadrontherapy measures but higher energy R. Spighi: Riunione di Bologna 14

Problems with higher energy: example of 12 C Res: ~3% Fragments with larger energy

Problems with higher energy: example of 12 C Res: ~3% Fragments with larger energy higher probability to fragment in CALO Fraction of deposited energy 200 Me. V/u Larger neutrons production A with Tof & Tracker tail = 17% missed energy in CAL FOOT redundancy 700 Me. V/u Res: ~ 4% tail = 77% ~ performance @ 700 Me. V/u 20% of well reconstructed R. Spighi: Riunione di Bologna 15

Tracks Reconstruction: M. Franchini, A. Mengarelli and R. Ridolfi FOOT in Bologna FOOT 11

Tracks Reconstruction: M. Franchini, A. Mengarelli and R. Ridolfi FOOT in Bologna FOOT 11 people involved NOME …. . … RUOLO FTE S. Biondi Ass. di Ricerca 0. 3 G. Bruni Dirigente Ricerca 0. 2 M. Franchini Ass. di Ricerca 0. 3 M. Garbini Ric. Centro Fermi 0. 2 A. Mengarelli Ass. di Ricerca 1. 0 G. Sartorelli Prof. Ord. 0. 2 R. Ridolfi Ph. D 1. 0 M. Selvi Ric. INFN III 0. 2 R Spighi Ric. INFN II 1. 0 M. Villa Prof. Ord. 0. 3 A. Zoccoli Prof. Ord. 0. 2 TOTALE (2019) 4. 9 Totale (2018) 2. 1 16 R. Spighi: Riunione di Bologna . . . . Analysis (fragment identification): R. Spighi FOOT …. . … . . . . Global data acquisition: M. Villa, S. Biondi and R. Ridolfi FOOT …. . … . . Global daq and trigger . . . .

Future perspective Test Beam / Data Taking q q q Test beam during 2018

Future perspective Test Beam / Data Taking q q q Test beam during 2018 -2019 at CNAO, Trento, Catania to finalize the detector GSI: 4/2019 Data taking with almost complete apparatus (~ first data taking) 2020 -21 Data taking with the complete apparatus Publications q q q SCN detector in publication on NIM EMC detector submitted to Open Physics Journal. General Apparatus Paper: in preparation R. Spighi: Riunione di Bologna Trento Proton Therapy Center 17

Backup slides R. Spighi: Riunione di Bologna 18

Backup slides R. Spighi: Riunione di Bologna 18

CATANA Proton Therapy beam line Hadrontherapy in Italy Proton therapy Center - Trento CNAO

CATANA Proton Therapy beam line Hadrontherapy in Italy Proton therapy Center - Trento CNAO Pavia Centro Nazionale Terapia Oncologica q q q Proton beam (till 60 Me. V) q Active since 2002 Eye tumour: 363 patients (98% q survived) proton beam till 250 Me. V Carbon beam till 400 Me. V Active since 2011 First 5 years 828 patients (70 -90% success) Till now 1200 patients R. Spighi: Riunione di Bologna q q Active since 2015 Proton beam (60 -230 Me. V) Full body treatment Experimental halls 19

brief experimental panorama on proton cross section Reaction EKin Me. V σTOT (mb) p

brief experimental panorama on proton cross section Reaction EKin Me. V σTOT (mb) p p 10 300 100 30 180 -500 25 -35 600 -2000 45 -50 P 4 He 150 -600 110 -120 P 9 Be 200 -600 230 -250 P 12 C 50 450 100 -200 230 200 -1000 280 -350 P 16 O 20 550 50 400 200 350 200 -600 P 40 Ca 350 -400 30 900 100 -200 500 R. Spighi: Riunione di Bologna 20

brief experimental panorama on p 12 C differential cross section 6 Li n p

brief experimental panorama on p 12 C differential cross section 6 Li n p 3 He 7 Be 10 B 10 C 11 C D 9 Be T 7 Li 3 He 11 B R. Spighi: Riunione di Bologna 21

FOOT: Emulsion chamber setup C on C @ 200 Me. V/nucl FLUKA Light fragments

FOOT: Emulsion chamber setup C on C @ 200 Me. V/nucl FLUKA Light fragments (Z<3) produced at wide angle (~75°) n, p, D, T, He Start counter Beam monitor Beam movement to avoid pile-up 10 cm Section 1 vertexing 300 μm Emulsion layer Section 2 Charge Identification 1 mm Emulsion layer C or C 2 H 4 Emulsion Chamber High speed automated scanning Section 3 momentum 1 mm Pb layer R. Spighi: Riunione di Bologna 22 G. De Lellis et al. JINST 2, 2007, P 06004