RFI MITIGATION IMPLEMENTATION FOR PULSAR RADIOASTRONOMY D AITALLAL

  • Slides: 16
Download presentation
RFI MITIGATION IMPLEMENTATION FOR PULSAR RADIOASTRONOMY D. AITALLAL, C. DUMEZ-VIOU, R. WEBER Observatoire de

RFI MITIGATION IMPLEMENTATION FOR PULSAR RADIOASTRONOMY D. AITALLAL, C. DUMEZ-VIOU, R. WEBER Observatoire de Paris /CNRS-INSU CNRS B 704 www. obs-nancay. fr Project Prep. SKA (contract no 212243) and Project Radionet/Uniboard (contract no 227290)), The French fundingagency ANR (contract ANR-09 -BLAN-0225 -04)

RFI MITIGATION IMPLEMENTATION FOR PULSAR RADIOASTRONOMY Outline: I. Introduction II. Power Detector at Nançay

RFI MITIGATION IMPLEMENTATION FOR PULSAR RADIOASTRONOMY Outline: I. Introduction II. Power Detector at Nançay multipurpose receiver (RDH) III. Cyclo. Det: A cyclic detector. IV. Two Dimensional FFT detector (2 D-FFT): RFI mitigation + Giant Pulses detection V. Conclusion 2

Introduction For Pulsar Timing: a) impulsive or burst broad-band RFI => Power criteria Detector

Introduction For Pulsar Timing: a) impulsive or burst broad-band RFI => Power criteria Detector b) Just after the PFB, for continuous RFI Cyclostationary c) Just after the FFT, for narrow band continuous RFI Detector For Giant Pulse detection: On-line method detection with RFI mitigation capabilities both for impulsive and narrow band RFI. Based on a 2 -dimensional FFT (2 D FFT) and Radon transform. 3

RFI MITIGATION IMPLEMENTATION FOR PULSAR RADIOASTRONOMY Outline: I. Introduction II. Power Detector at Nançay

RFI MITIGATION IMPLEMENTATION FOR PULSAR RADIOASTRONOMY Outline: I. Introduction II. Power Detector at Nançay multipurpose receiver (RDH) III. Cyclo. Det: A cyclic detector. IV. Two Dimensional FFT detector (2 D-FFT): RFI mitigation + Giant Pulses detection V. Conclusion 4

Power Detector Decimeter Radiotelescope Decameter array • High dynamic (70 d. B) • High

Power Detector Decimeter Radiotelescope Decameter array • High dynamic (70 d. B) • High frequency resolution (Δfmin=107 Hz) • High temporal resolution (Δtmin=9 µs/spectrum) • FPGA and DSP resources available for RFI mitigation 5

Blanker on waveform (1) Architecture optimized for efficient hardware implementation : Shift registers, comparators,

Blanker on waveform (1) Architecture optimized for efficient hardware implementation : Shift registers, comparators, multipliers, glue logic 2. 7% of a XC 2 V 3000 FPGA 145 Ms/s throughput Robust mean power estimation Strong pulses strategy 3 samples window ~3σ detection Weak pulses strategy 30 samples window ~0. 8σ detection Blanking decision logic 6

Blanker on waveform (2) Testing of the radar blanker on real data in real

Blanker on waveform (2) Testing of the radar blanker on real data in real time RADAR PGC 51094 with blanking without blanking 7

RFI MITIGATION IMPLEMENTATION FOR PULSAR RADIOASTRONOMY Outline: I. Introduction II. Power Detector at Nançay

RFI MITIGATION IMPLEMENTATION FOR PULSAR RADIOASTRONOMY Outline: I. Introduction II. Power Detector at Nançay multipurpose receiver (RDH) III. Cyclo. Det: A cyclic detector IV. Two Dimensional FFT detector (2 D-FFT): RFI mitigation + Giant Pulses detection V. Conclusion 8

Cyclostationarity concept Cyclostationary process Stationary process statistics time-independent Example : second order statistics s(t)

Cyclostationarity concept Cyclostationary process Stationary process statistics time-independent Example : second order statistics s(t) or n(t) statistics are periodic T = hidden periodicity r(t) Cyclic signature 0 Cyclic correlation Cyclic frequency In practice : 9 Gardner and Giannakis 0 Cyclic frequency

CYCLODET: A CYCLIC DETECTOR 10

CYCLODET: A CYCLIC DETECTOR 10

RFI MITIGATION IMPLEMENTATION FOR PULSAR RADIOASTRONOMY Outline: I. Introduction II. Power Detector at Nançay

RFI MITIGATION IMPLEMENTATION FOR PULSAR RADIOASTRONOMY Outline: I. Introduction II. Power Detector at Nançay multipurpose receiver (RDH) III. Cyclo. Det: A cyclic detector IV. Two Dimensional FFT detector (2 D-FFT): RFI mitigation + Giant Pulses detection V. Conclusion 11

ON-line Giant Pulse Detector 12

ON-line Giant Pulse Detector 12

Giant Pulse Detector 2 D-FFT Radon Transform Without blanking 13 With blanking

Giant Pulse Detector 2 D-FFT Radon Transform Without blanking 13 With blanking

Giant Pulse Detector 14

Giant Pulse Detector 14

RFI MITIGATION IMPLEMENTATION FOR PULSAR RADIOASTRONOMY Outline: I. Introduction II. Power Detector at Nançay

RFI MITIGATION IMPLEMENTATION FOR PULSAR RADIOASTRONOMY Outline: I. Introduction II. Power Detector at Nançay multipurpose receiver (RDH) III. Cyclo. Det: A cyclic detector IV. Two Dimensional FFT detector (2 D-FFT): RFI mitigation + Giant Pulses detection V. Conclusion 15

Conclusion • In the framework of the UNIBOARD FP 7 European project, these algorithms

Conclusion • In the framework of the UNIBOARD FP 7 European project, these algorithms will be implemented in a multi-purpose scalable computing platform for Radio Astronomy as part of the pulsar receiver. • In the case of Giant pulse detection, a new approach which combines a hardware efficient search method and some RFI mitigation capabilities has been proposed. • Extend this 2 D-FFT tool for pulsar search 16