Resonance and exotics production from heavy ion collisions

  • Slides: 41
Download presentation
Resonance and exotics production from heavy ion collisions Su Houng Lee 1. Few words

Resonance and exotics production from heavy ion collisions Su Houng Lee 1. Few words on Multiquark configurations 2. Particle production in heavy ion collision 3. Exotics from heavy ion collisions 4. Summary +T. Song, K. Morita, Maeda S. Cho, SHL, ar. Xiv: 1509. 04092; S. Cho, T. Song, SHL, ar. Xiv: 1511. 08019 1

I: Few words on “Multiquark states” X(3872), Zc(3900), … Zb(10610), Zb(10650) + LHCb J/y

I: Few words on “Multiquark states” X(3872), Zc(3900), … Zb(10610), Zb(10650) + LHCb J/y p PRL 115, 072001 (2015) 2

X(3872) - 2003 - - 2013 - 3

X(3872) - 2003 - - 2013 - 3

Z(4430) - 2007 - - 2014 Spin parity = 1+ G=+ will look at

Z(4430) - 2007 - - 2014 Spin parity = 1+ G=+ will look at C=- 4

Z(3900) - 2013 BESIII (Belle) Probably the same Quantum Number as Z(4430) Hence, 5

Z(3900) - 2013 BESIII (Belle) Probably the same Quantum Number as Z(4430) Hence, 5

Pentaquark - Pc - 2015 - 6

Pentaquark - Pc - 2015 - 6

Comact multiquark configuration? Not so easy - Color singlet configuration: - Spin 1 configuration

Comact multiquark configuration? Not so easy - Color singlet configuration: - Spin 1 configuration from : c q quark c q antiquark or where C=+ Color Spin C=- 7

Comact multiquark configuration? Not so easy Ø Ø : : c q Favors over

Comact multiquark configuration? Not so easy Ø Ø : : c q Favors over c q Ø : should be strong enough to overcome repulsion from kinetic term Otherwise can form molecular configuration 8

H dibaryon H u d u s vs u u s d L L

H dibaryon H u d u s vs u u s d L L d u s s Park, SHL (PRD 2016) 9

Ø C=+ state (Woosung Park, SHL 14) Or Ø (Tornqvist 94) C=- state Or

Ø C=+ state (Woosung Park, SHL 14) Or Ø (Tornqvist 94) C=- state Or Or Riquer) is molecular states is 2 s of in diquark picture (Maiani, Polosa, 10

d*(2380) - WASA-at-COSYd* u d u u u Color Spin Favor V 3 bar

d*(2380) - WASA-at-COSYd* u d u u u Color Spin Favor V 3 bar 0 3 bar -2 1 6 2/3 0 6 1 1 3 bar -1/3 (QQ)2 (QQ)3 (QQ)4 6 d d d (QQ)1 D D W. Park, A. Park, SHL, (PRD 15) 11

Real compact multiquark states Ø A 3 -body or 4 body force could favor

Real compact multiquark states Ø A 3 -body or 4 body force could favor and lead to compact 4 quark state or artificially increase diquark correlation Ø 1 2 3 4 Color Spin force Tcc Tcb : 1 2 3 4 real compact flavor exotic tetraquarks 12

II: Particle production in Heavy Ion Collision 13

II: Particle production in Heavy Ion Collision 13

Hadron production in ( p+p C+X ) collision c u b p d u

Hadron production in ( p+p C+X ) collision c u b p d u Gb/p c b ds a d p c u Ga/p C DC/c g d a X 14

Particle production in heavy ion collision Hadron Multiquark formation T TC 1 fm/c QGP

Particle production in heavy ion collision Hadron Multiquark formation T TC 1 fm/c QGP 5 fm/c Light nuclei Molecular structure formation Tm 7 fm/c TF Hadron phase t 17 fm/c 15

Normal meson, compact multiquark, molecules, resonances Normal meson Compact multiquark Molecules u Geometrical configuration

Normal meson, compact multiquark, molecules, resonances Normal meson Compact multiquark Molecules u Geometrical configuration Examples u d Nucleon, pion, kaon u u d u ? d Resonance u u d d Deuteron, light nuclei u d K*, rho meson 16

Production of hadrons near Tc RHIC – Statistical model (PBM. . ) ALICE –

Production of hadrons near Tc RHIC – Statistical model (PBM. . ) ALICE – Statistical model resonance 17

Production of resonances ALICE (2015 prc) Ø Reconstruction 18

Production of resonances ALICE (2015 prc) Ø Reconstruction 18

Rate equation for K* (resonance) production Ø Destruction: Ø Creation Ø Thermal Equilibrium 19

Rate equation for K* (resonance) production Ø Destruction: Ø Creation Ø Thermal Equilibrium 19

Freeze out condition for a particle Ø Two time scale (=cosmology) Ø Freeze out

Freeze out condition for a particle Ø Two time scale (=cosmology) Ø Freeze out condition T TH Ø TF Freeze out density 7 fm/c Hadron phase t 17 fm/c 20

Detailed hydrodynamic calculation - 1 S. Cho, SHL, ar. Xiv: 1509. 04092; S. Cho,

Detailed hydrodynamic calculation - 1 S. Cho, SHL, ar. Xiv: 1509. 04092; S. Cho, T. Song, SHL, ar. Xiv: 1511. 08019 Later time Low density 21

Detailed calculation - 2 S. Cho, SHL, ar. Xiv: 1509. 04092; S. Cho, T.

Detailed calculation - 2 S. Cho, SHL, ar. Xiv: 1509. 04092; S. Cho, T. Song, SHL, ar. Xiv: 1511. 08019 22

Detailed calculation Ø Two time scale (=cosmology) ALICE (2015 prc) 23

Detailed calculation Ø Two time scale (=cosmology) ALICE (2015 prc) 23

Production of light nuclear RHIC/STAR (Yugang Ma) ALICE – Statistical model S/N i conserved

Production of light nuclear RHIC/STAR (Yugang Ma) ALICE – Statistical model S/N i conserved (Siemens, Kapusta 79) 24

Rate equation for deuteron (bound states) production Ø Destruction: Ø Creation Ø Thermal Equilibrium

Rate equation for deuteron (bound states) production Ø Destruction: Ø Creation Ø Thermal Equilibrium 25

Non equilibrium Ø Ø Number of Ground state particles remain almost constant Deuteron 26

Non equilibrium Ø Ø Number of Ground state particles remain almost constant Deuteron 26

Comparison Ø Ø K* (Resonance) production Deuteron (bound state) production 27

Comparison Ø Ø K* (Resonance) production Deuteron (bound state) production 27

Normal meson, compact multiquark, molecules, resonances Normal meson Compact multiquark Molecules u Geometrical configuration

Normal meson, compact multiquark, molecules, resonances Normal meson Compact multiquark Molecules u Geometrical configuration Yields /Statistical model u d 1 u u d u < 0. 1 u u d ~1 Resonance u d ~ 0. 5 28

Production of resonances ALICE (2015 prc) Ø Reconstruction STAR collaboration (PRL 2006) find 29

Production of resonances ALICE (2015 prc) Ø Reconstruction STAR collaboration (PRL 2006) find 29

Coalescence model M u d d u PT dependence of ratio Greco, et al

Coalescence model M u d d u PT dependence of ratio Greco, et al u s u d c s c Quark number scaling of v 2 d u c c d v 4 Greco et al 30

Hadron production near phase bounday. H(T ) Coalescence model = Statistical model + overlap

Hadron production near phase bounday. H(T ) Coalescence model = Statistical model + overlap Suppression of p-wave resonance (Muller and Kadana En’yo) M u u s u d d u d c s c d u c d c 31

Production multiquark model states are suppressed Success ofof Coalescence model = Statistical model +

Production multiquark model states are suppressed Success ofof Coalescence model = Statistical model + overlap u u d Normal meson [overlap]=1 d u u d c s d c u s d u d d u u u d c u u d u Tetraquark configuration [overlap]<<1 32

III: Exotics from Heavy Ion Collision 33

III: Exotics from Heavy Ion Collision 33

New perspective of Hadron Physics from Heavy Ion Collision Ø large number of c

New perspective of Hadron Physics from Heavy Ion Collision Ø large number of c , b quark production Ø Vertex detector: weakly decaying exotics : FAIR 104 D 0 /month, LHC 10 5 D 0/month Ø Tcc production Tcc/D > 0. 34 x 10 > 0. 8 x 10 -4 -4 RHIC LHC 34

Details of coalescence model calculation (Ex. HIC PRL, PRC 2011) Ø Model central rapidity,

Details of coalescence model calculation (Ex. HIC PRL, PRC 2011) Ø Model central rapidity, central collision Ø Introduce charm fugacity Ø Coalescence model and Wigner function Ø LHC 10 5 D 0/month Parameters to fit normal hadron production including resonance feedown from statistical model 35

Ø Hadron coalescence 36

Ø Hadron coalescence 36

Fachini [STAR] Expectations [overlap] at LHC 37

Fachini [STAR] Expectations [overlap] at LHC 37

Summary • • Whats the difference between compact multiquark states and molecular states Need

Summary • • Whats the difference between compact multiquark states and molecular states Need heavy quarks to enhance diquark correlation Multiquarks will tell us about 3, 4 -body QCD force Measurements from Heavy Ion can discriminate the structures Yields /Statistical model • Normal meson Compact multiquark Molecules Resonance 1 < 0. 1 1~ 2 ~ 0. 5 Flavor exotics will involves two heavy quarks Heavy ion can easily produce 38

Suggestions 1. Lambda (1405): two poles? 2. Dibayrons: d*(2323) D+D H, N-Omega, Hc(uuudsc) 3.

Suggestions 1. Lambda (1405): two poles? 2. Dibayrons: d*(2323) D+D H, N-Omega, Hc(uuudsc) 3. Light molecules or tetraquarks 4. Heavy Tetraquarks 5. Heavy Pentaquarks 39

Back up slides 40

Back up slides 40

Hadron production through coalescence u d d Normal meson [overlap]=1 d d Tetraquark configuration

Hadron production through coalescence u d d Normal meson [overlap]=1 d d Tetraquark configuration [overlap]<<1 d u u d s u u s d u u u d u d d u u s d d d s u d u d Molecular configuration: [overlap]=1 Coalescence model at Tc ratio of yield 41