REASONING LOGICAL ARGUMENT ARGUMENT An argument is a


















- Slides: 18

REASONING LOGICAL ARGUMENT

ARGUMENT An argument is a pattern of reasonign that encourages the making of conclusion based on logical thinking An argument consists of 2 premises and a conclusion. There are 3 types of Arguments

Type 1 Argument (Deductive Reasoning) Premise 1: All A (things/objects) are B (situation) Premise 2: C (specific things) is A Conclusion: C is B

Example of Type 1 Argument Premise 1: All men are mortal. Premise 2: Einstein is a man. Conclusion: Einstein is mortal. Premise 1: All even numbers are divisible by 2 Premise 2: 30 is an even number Conclusion: 30 is divisible by 2. 30 ialah nombor genap

Activity Make your own examples of Type 1 Argument. One is non-mathematical example and another with a mathematical example.

Type 2 Argument (Direct Reasoning Argument) Premise 1: If P happens then Q happens (Implication) Premise 2: P happens (antecedent happens) Conclusion: Q happens (consequence happens)

Example of Type 2 Argument Premise 1: If a number is a factor of 12 then that number is a factor of 24 Premise 2: 3 is a factor of 12 Conclusion: 3 is a factor of 24

Example Premise 1: If a set has m elements the that set has 2 m subsets. Premise 2: Set P has 5 elements. Conclusion: Set P has 25 subsets.

Activity Create one mathematical example using Type 2 Arguments

Type 3 Arguments (Indirect Reasoning Argument) Premise 1: If p happens, then q happens Premise 2: q does not happen Conclusion: p does not happens

Example of Type 3 Argument Premise 1: If m is an interger then 2 m is an even number Premise 2: 2 m is not an even number Conclusion: m is not an integer

Premise 1: If n is an odd number then (n+1) is an even number Premise 2: (n + 1) in not an even number Conclusion: n is not an odd number

PREMISE 1: If x = 9º, then 15º - x = 6º PREMISE 2: 15 - xº 6 CONCLUSION: x 9º

ARUHAN Satu proses membuat kesimpulan umum berdasarkan kes-kes khusus Contoh bukan matematik: Carlos suka main guitar(kes khusus) Ceasar suka main guitar(kes khusus) Calvin suka main guitar(kes khusus) Catherine suka main guitar(kes khusus) Cheong suka main guitar(kes khusus) Kesimpulan umum: Semua orang yang namanya bermula dengan huruf C suka main guitar.

CONTOH MATEMATIK Diberi 5, 8, 11, 14, … boleh ditulis sebagai 5 = 5 + 3(0) 8 = 5 + 3(1) 11 = 5 + 3(2) 14 = 5 + 3(3) kesimpulan umum: Nombor berpola di atas boleh ditulis dalam bentuk 5 + 3 n, n = 0, 1, 2, 3…. .

CONTOH Buat kesimpulan secara aruhan bagi senarai no 8, 23, 44, 71, … yang mengikut pola berikut: 8 = 3(2)2 – 4 23 = 3(3)2 – 4 44 = 3(4)2 – 4 71 = 3(5)2 – 4 Kesimpulan: Nombor berpola di atas boleh ditulis dalam bentuk 3 n 2 – 4, n = 2, 3, 4, 5, ….

DEDUKSI Deduksi ialah satu proses membuat kesimpulan khusus berdasarkan pernyataan umum. CONTOH Pernyataan umum: am an = am+n Kesimpulan khusus: 33 35 = 38

CONTOH Suatu set yang mengandungi k unsur mempunyai 2 k subset. Cari bilangan subset bagi set P ={ 0, 1, 5, 6} Bilangan subset bagi set P = 24 = 16
P q logical equivalence
Logical equivalence in discrete mathematics
What is logic
Logical reasoning
Inductive and deductive reasoning
Logical argument
Problem solving logical reasoning
Inductive reasoning and conjecture 2-1
What is logical reasoning
Inductive and deductive method of teaching ppt
Inductive vs deductive reasoning
Examples of deductive reasoning
Difference of inductive and deductive reasoning
Deductive learning vs inductive learning
Reasoning vs evidence
Inductive reasoning patterns
Modus tollens
An error in reasoning that produces a flawed argument
Ontological vs teleological