Quench Simulation Framework in MatlabSimulink Micha Maciejewski Emmanuele
Quench Simulation Framework in Matlab/Simulink Michał Maciejewski Emmanuele Ravaioli TE-MPE-PE 22. 05. 2014 24/10/2021 Quench Simulation Framework M. Maciejewski, E. Ravaioli 2
Outline Introduction Requirements 24/10/2021 Architecture Results Summary Quench Simulation Framework M. Maciejewski, E. Ravaioli 3
Motivation Simulation of electro-thermal transient in S. C. circuits is needed in order to • study new protection methods, • design electrical circuits with S. C. magnets, • assess the performance of existing ones. 24/10/2021 Quench Simulation Framework M. Maciejewski, E. Ravaioli 4
Challenges � Different levels of detail � entire circuit→ magnet→ cable→ strand→ filament � Different physical domains � electrical transients, quench back, quench limits, Ohmic loss, heat propagation, coupling loss, etc � High flexibility needed � different magnet configurations, protection schemes � Quick simulations � model development in 1 -2 days, simulation runs < 1 hour 24/10/2021 Quench Simulation Framework M. Maciejewski, E. Ravaioli 5
S. C. Magnets Modelling - Approach Wcable l coil hcable dstrand Magnet properties are assumed to be homogeneous along The inter-filament and inter-strand coupling Then polescalculates are split into cables. Each cable is represented in Allmodel physical and magnetic properties are supposed to be the directiondynamic (2 D model) and are split into We longitudinal use lumped-element electro-thermal model electrical andloss. thermal domain. homogeneous in the same block. poles/half-poles 24/10/2021 Quench Simulation Framework M. Maciejewski, E. Ravaioli 6
Lumped Element Dynamic Electro-Thermal Model Mij d. I/dt d. B/dt ISCL IFCL Ld U OHM I T>TCS ! Rel Courtesy of E. Ravaioli T Cth Rth h. He 7
S. C. Magnet Circuits – Quench Protection 2 1 P 12 -P 34 3 4 1 2 3 4 + 24/10/2021 Quench Simulation Framework M. Maciejewski, E. Ravaioli 8
S. C. Magnet Circuits – Quench Protection 2 1 P 14 -P 32 3 4 + 24/10/2021 1 3 2 4 Quench Simulation Framework M. Maciejewski, E. Ravaioli 9
S. C. Magnet Circuits – Quench Protection 2 1 P 14 -P 32 3 4 + 24/10/2021 1 2 QH QH - 3 4 QH QH Quench Simulation Framework M. Maciejewski, E. Ravaioli 10
S. C. Magnet Circuits – Quench Protection e d o Di 2 1 P 14 -P 32 3 4 + 24/10/2021 1 3 2 4 Quench Simulation Framework M. Maciejewski, E. Ravaioli 11
„Hand-made” models - drawbacks � Efficient only for relatively small models � Prone to copy&paste errors � Difficult to use models by others � Plenty of time spent on debugging/testing 24/10/2021 Quench Simulation Framework M. Maciejewski, E. Ravaioli 12
Solver Requirements 24/10/2021 Quench Simulation Framework M. Maciejewski, E. Ravaioli 13
Framework Requirements Parametric sweep Fast Model Development Modularity Automatic Design Scalability Components library Quench Simulation Framework 24/10/2021 Quench Simulation Framework M. Maciejewski, E. Ravaioli 14
Framework Architecture GUI/Excel MATLAB (Application) Simulink (Solver, library) 24/10/2021 Quench Simulation Framework M. Maciejewski, E. Ravaioli 15
Components library Thermal Mass (Nb. Ti/Nb 3 Sn, Cu, G 10, Kapton) Hot Spot Calculation (Nb. Ti/Nb 3 Sn) CLIQ Diode Current Lead Conductive Heat Transfer (Kapton, G 10) Energy Extraction Helium Cooling Quench Resistor (Nb. Ti/Nb 3 Sn, Cu) Power Converter Inter-filament Coupling Loss in X/Y direction Inter-strand Coupling loss Dynamic effects (Inductance depends on current) Superconducting Magnet 24/10/2021 Quench Heater Quench Protection Quench Simulation Framework M. Maciejewski, E. Ravaioli Other 16
MATLAB Application Resis tors Inductors Masses Thermal CLIQ Quench Heaters Black box Objects Simulink Model Input Excel Results Analysis 24/10/2021 Quench Simulation Framework M. Maciejewski, E. Ravaioli 17
Other features • Parametric Sweep • Automatic comparison with measurements • Report generation • Test cases • Mail notification 24/10/2021 Quench Simulation Framework M. Maciejewski, E. Ravaioli 18
Available Magnet Types QSF X X X soon Measurements X 2009 X X X X 2013 Time Validation Magnet/Circuit PSpice RB X* RQX X IPQ/IPD X RQS X RQTL X RSS X MQXC 2 X HQ 02 SQXF LQXF MB -CLIQ MQY -CLIQ 11 T Dipole 2014 *no thermal part 24/10/2021 Quench Simulation Framework M. Maciejewski, E. Ravaioli 19
Current Change Magnetic Field Change Coupling. Losses (Heat) Coupling Loss Induced Quench Temperature Rise EU Patent EP 13174323. 9, June 2013. QUENCH E. Ravaioli et al. , MT 23, 2013. E. Ravaioli et al. , EUCAS 11, 2013. E. Ravaioli et al. , CHATS-AS, 2013. E. Ravaioli et al. , Su. ST, 2014. 24/10/2021 Quench Simulation Framework M. Maciejewski, E. Ravaioli 20
Coupling Loss Induced Quench 27” 24/10/2021 Quench Simulation Framework M. Maciejewski, E. Ravaioli 21
HQ 02 b Test Results – Currents Current in the two sides of the magnet Simulated 2 D Temperature Profile Current discharged by CLIQ 24/10/2021 Electrical and thermal transients well reproduced by the model Quench Simulation Framework M. Maciejewski, E. Ravaioli 22
Schematic Editor GUI/Excel MATLAB (Application) Simulink (Solver, library) 24/10/2021 Quench Simulation Framework M. Maciejewski, E. Ravaioli 23
Schematic Editor – netlist example Connect( R 1, ’+’, L 1_1, ’-’) Connect( L 1_1, ’-’, L 1_2, ’+’) Connect( L 1_2, ’-’, L 2_1, ’+’) Connect( L 2_1, ’-’, L 2_2, ’+’) Connect( L 2_2, ’+’, R 3, ’+’) Connect( R 3, ’+’, Gnd, ’’) Connect( R 3, ’+’, PC 2, ’-’) Connect( PC 2, ’+’, R 2, ’-’) Connect( R 2, ’+’, L 1_2, ’-’) Connect( R 2, ’-’, PC 1, ’-’) Connect( PC 1, ’+’, R 1, ’-’) Connect( D 1, ’+’, L 1_1, ’+’) … Connect( Name. From, Port. From, Name. To, Port. To ) 24/10/2021 Quench Simulation Framework M. Maciejewski, E. Ravaioli 24
Graphical User Interface 24/10/2021 Quench Simulation Framework M. Maciejewski, E. Ravaioli 25
Executable Models • Faster runs of complex models • Convenient way of sharing/storing models • The knowledge embedded inside an exe file 24/10/2021 Quench Simulation Framework M. Maciejewski, E. Ravaioli 26
Summary – time savings Quench Simulation Framework Standard Approach 24/10/2021 Quench Simulation Framework M. Maciejewski, E. Ravaioli 27
Summary • Model results successfully validated against PSpice simulation results and/or against tests • Same physics contained in the “hand-made” PSpice models is now contained in highly-efficient, easily created Simulink models • No experience with Simulink needed to run simulations • QSF makes it easy to simulate various magnet types and new quench protection schemes • OOP and Design Patterns enabled to develop clean and maintainable code 24/10/2021 Quench Simulation Framework M. Maciejewski, E. Ravaioli 28
Thank you for attention! 24/10/2021 Quench Simulation Framework M. Maciejewski, E. Ravaioli 29
- Slides: 30