Quantum Computer Architecture Prof Eric Rotenberg ECE 792
Quantum Computer Architecture Prof. Eric Rotenberg ECE 792 (046) Fall 2019 Topic 2: Hybrid Classical/Quantum Solvers Part A: Variational Quantum Eigensolvers
Background: eigenvectors and eigenvalues • A vector v is an eigenvector with respect to a transform (matrix) A, if multiplying A and v is the same as scaling v by a scalar value λ, which is the eigenvalue corresponding to the eigenvector v. matrix eigenvector eigenvalue for this eigenvector https: //en. wikipedia. org/wiki/Eigenvalues_and_eigenvectors ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 2
ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 3
Graph max-cut problem This red/blue grouping of nodes maximizes the sum of edges (3+2+2+3+3=13) that are cut between the red and blue groups. ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 4
Analogy between max-cut and lowest-energy state (ground state) in physics ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 5
Energy states • ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 6
Energy states (cont. ) ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 7
Hamiltonian for our purposes: all possible energy states on diagonal c 2 A 1 B 1 c 2 A 1 ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 1 B 8
Eigenvectors = basis states Eigenvalues = diagonal elements of Hamiltonian λ=-1 A ∙ v = λv ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 9
Expectation value • ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 10
Graph specification: adjacency matrix ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 11
Computing Hamiltonian from adjacency matrix First: just AB edge ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg times 1 implied 12
Computing Hamiltonian from adjacency matrix (cont. ) • Second: just AC edge Again: computed Hamiltonian decreases energy (negative value) for basis states in which A and C differ, and increases energy (positive value) for basis states in which A and C are the same. ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 13
Computing Hamiltonian from adjacency matrix (cont. ) And finally: take AB and AC edges together by summing the two sub-Hamiltonians = + ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 14
Computing Hamiltonian from adjacency matrix (cont. ) ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 15
VQE • Still figuring out how Hamiltonian H manifests in the circuit to right. • Classical computer initializes settings of y-rotation gates, Ry, using an “ansatz” (educated guess), quantum computer evaluates (energy of) the ansatz, then classical computer tweaks a single Ry gate to evaluate a modified ansatz. This repeats. With each iteration, the energy reduces and the basis state corresponding to the max-cut eventually emerges. ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 16
Aside: math leading us to rotation gates • https: //en. wikipedia. org/wiki/Normal_matrix https: //en. wikipedia. org/wiki/Unitary_matrix https: //en. wikipedia. org/wiki/Hermitian_matrix ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 17
Aside: math leading us to rotation gates (cont. ) • ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 18
Aside: math leading us to rotation gates (cont. ) • Finding the eigenvalues of A: https: //en. wikipedia. org/wiki/Eigenvalues_and_eigenvectors • Determinant of a 2 x 2 matrix: https: //en. wikipedia. org/wiki/Determinant ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 19
Aside: math leading us to rotation gates (cont. ) • Exercise 2. 11, p. 69: “(Eigendecomposition of the Pauli matrices) Find the eigenvectors, eigenvalues, and diagonal representations of the Pauli matrices X, Y, and Z. ” characteristic equation eigenvectors eigenvalues ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 20
Aside: math leading us to rotation gates (cont. ) • Exercise 2. 11, p. 69: “(Eigendecomposition of the Pauli matrices) Find the eigenvectors, eigenvalues, and diagonal representations of the Pauli matrices X, Y, and Z. ” characteristic equation eigenvectors eigenvalues ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 21
Aside: math leading us to rotation gates (cont. ) • Exercise 2. 11, p. 69: “(Eigendecomposition of the Pauli matrices) Find the eigenvectors, eigenvalues, and diagonal representations of the Pauli matrices X, Y, and Z. ” characteristic equation eigenvectors eigenvalues ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 22
Aside: math leading us to rotation gates (cont. ) eigenvalues eigenvectors ECE 792 (046), Quantum Comp. Arch. , Fall 2019 eigenvectors as columns (for P) (c) Eric Rotenberg 23
https: //en. wikipedia. org/wiki/Matrix_exponential ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 24
Rotation gates: exponentiated Pauli gates • ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 25
eigenvectors eigenvalues ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 26
eigenvectors eigenvalues ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 27
eigenvectors eigenvalues ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 28
Identity from textbook ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 29
Revisit spectral decomposition • ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 30
Revisit spectral decomposition (cont. ) eigenvectors eigenvalues ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 31
Summing up derivation of rotation gates • Three alternate techniques that achieve the same thing (for Hermitian-and-unitary matrix) • Exploit diagonalization • Exploit spectral decomposition • Exploit this identity: ECE 792 (046), Quantum Comp. Arch. , Fall 2019 eigenvector column matrix diagonal eigenvalue matrix eigenvector row matrix (c) Eric Rotenberg 32
Understanding VQE circuits based on rotation gates (1) • https: //en. wikipedia. org/wiki/Lie_product_formula X ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 33
Understanding VQE circuits based on rotation gates (2 a) https: //vtomole. com/blog/2019/04/07/trotter • ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 34
Understanding VQE circuits based on rotation gates (2 b) https: //vtomole. com/blog/2019/04/07/trotter • ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 35
Understanding VQE circuits based on rotation gates (3) • ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 36
ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 37
Backup slides ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 38
ECE 792 (046), Quantum Comp. Arch. , Fall 2019 (c) Eric Rotenberg 39
- Slides: 39