Quantum Coding with Entanglement Mark M Wilde Communication

  • Slides: 28
Download presentation
Quantum Coding with Entanglement Mark M. Wilde Communication Sciences Institute, Ming Hsieh Department of

Quantum Coding with Entanglement Mark M. Wilde Communication Sciences Institute, Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 Quantum Lunch, Los Alamos National Lab (April 24, 2008)

Outline • Review techniques for Quantum Error Correction (Including Entanglement-Assisted Coding) • Entanglement-Assisted Quantum

Outline • Review techniques for Quantum Error Correction (Including Entanglement-Assisted Coding) • Entanglement-Assisted Quantum Convolutional Coding ar. Xiv: 0712. 2223 • Unified Quantum Convolutional Coding ar. Xiv: 0801. 0821 • Hint at new directions ar. Xiv: 08? ? ar. Xiv: 09? ?

Quantum Block Code Encode qubits with ancillas Perform measurements that learn only about errors

Quantum Block Code Encode qubits with ancillas Perform measurements that learn only about errors Shor, PRA 52, pp. R 2493 -R 2496 (1995).

Example Stabilizer for a Block Code Unencoded Stabilizer Encoded Stabilizer Laflamme et al. ,

Example Stabilizer for a Block Code Unencoded Stabilizer Encoded Stabilizer Laflamme et al. , Physical Review Letters 77, 198 -201 (1996).

Entanglement-Assisted Quantum Block Code Brun, Devetak, Hsieh, Science 314, 436 -439 (2006).

Entanglement-Assisted Quantum Block Code Brun, Devetak, Hsieh, Science 314, 436 -439 (2006).

Example Stabilizer for an EA Code Unencoded Stabilizer Encoded Stabilizer Brun, Devetak, Hsieh, Science

Example Stabilizer for an EA Code Unencoded Stabilizer Encoded Stabilizer Brun, Devetak, Hsieh, Science 314, 436 -439 (2006).

Minimum Ebit Formulae for EA Coding Given a set of generators H with good

Minimum Ebit Formulae for EA Coding Given a set of generators H with good error-correcting properties The minimum number of ebits the quantum code needs is CSS code imported from 2 classical codes Quantum code imported from classical GF(4) code Wilde and Brun, ar. Xiv: 0804. 1404 (2008).

Classical Convolutional Coding techniques have application in cellular and deep space communication Viterbi Algorithm

Classical Convolutional Coding techniques have application in cellular and deep space communication Viterbi Algorithm is most popular technique for determining errors

FIR Encoding Circuits Finite-duration input streams produce finite-duration output streams (corresponding to finite polynomials)

FIR Encoding Circuits Finite-duration input streams produce finite-duration output streams (corresponding to finite polynomials)

IIR Encoding Circuits Finite-duration input streams can produce infinite-duration output streams (corresponding to rational

IIR Encoding Circuits Finite-duration input streams can produce infinite-duration output streams (corresponding to rational polynomials)

Quantum Convolutional Coding Ollivier, Tillich, PRL 91, 177902 (2003). Forney, Grassl, Guha, IEEE Trans.

Quantum Convolutional Coding Ollivier, Tillich, PRL 91, 177902 (2003). Forney, Grassl, Guha, IEEE Trans. Inf. Theory 53, 865 -880 (2007). Grassl, Rötteler, In proceedings of ISIT (2005, 2006, 2007).

Example Stabilizer for a QCC Unencoded Stabilizer Encoded Stabilizer Forney, Grassl, Guha, IEEE Trans.

Example Stabilizer for a QCC Unencoded Stabilizer Encoded Stabilizer Forney, Grassl, Guha, IEEE Trans. Inf. Theory 53, 865 -880 (2007).

Entanglement-Assisted Quantum Convolutional Coding Wilde and Brun, ar. Xiv: 0712. 2223 (2007).

Entanglement-Assisted Quantum Convolutional Coding Wilde and Brun, ar. Xiv: 0712. 2223 (2007).

Example Stabilizer for an EAQCC Unencoded Stabilizer Encoded Stabilizer Wilde and Brun, ar. Xiv:

Example Stabilizer for an EAQCC Unencoded Stabilizer Encoded Stabilizer Wilde and Brun, ar. Xiv: 0712. 2223 (2007).

Encoding Circuit for Example EAQCC Classical conv. code EAQCC Rate (1/2, 1/2) Wilde and

Encoding Circuit for Example EAQCC Classical conv. code EAQCC Rate (1/2, 1/2) Wilde and Brun, ar. Xiv: 0712. 2223 (2007).

Infinite-Depth Operations Implements

Infinite-Depth Operations Implements

Example Stabilizer for another EAQCC Unencoded Stabilizer Encoded Stabilizer Wilde and Brun, ar. Xiv:

Example Stabilizer for another EAQCC Unencoded Stabilizer Encoded Stabilizer Wilde and Brun, ar. Xiv: 0712. 2223 (2007).

EAQCC Example 2 Classical conv. code EAQCC Rate (1/2, 1/2)

EAQCC Example 2 Classical conv. code EAQCC Rate (1/2, 1/2)

Classes of EAQCCs 1) Finite-depth encoding and decoding circuits 2) Finite-depth and infinite-depth encoding

Classes of EAQCCs 1) Finite-depth encoding and decoding circuits 2) Finite-depth and infinite-depth encoding circuit, and Finite-depth decoding circuit

Advantages of EAQCC Produce an EAQCC from two arbitrary classical binary convolutional codes: The

Advantages of EAQCC Produce an EAQCC from two arbitrary classical binary convolutional codes: The rate and error-correcting properties of the classical codes translate to the EAQCC. (high-performance classical codes => high-performance quantum codes)

Unified Quantum Convolutional Coding Resources for Quantum Redundancy Ancillas (Active and Passive) Ebits (Active)

Unified Quantum Convolutional Coding Resources for Quantum Redundancy Ancillas (Active and Passive) Ebits (Active) Gauge qubits (Passive) Encoded Information Quantum Classical (Additional Passive)

Goal of Unified QCC Approach optimal rates in the following “grandfather” resource inequality: Forms

Goal of Unified QCC Approach optimal rates in the following “grandfather” resource inequality: Forms a portion of the three-dimensional capacity region where the protocol consumes n. E ebits and n channel uses to send n. Q noiseless qubits and n. R noiseless classical bits. Devetak et al. , In preparation, 2008.

Example of a [5, 1, 1; 1, 1] Unified QCC Wilde and Brun, ar.

Example of a [5, 1, 1; 1, 1] Unified QCC Wilde and Brun, ar. Xiv: 0801. 0821, Accepted for ISIT, Toronto, July 2008.

Current Work on EAQCC Deriving methods for general (non-CSS) entanglementassisted quantum convolutional codes. Important

Current Work on EAQCC Deriving methods for general (non-CSS) entanglementassisted quantum convolutional codes. Important Technique Equivalent Code Wilde and Brun, In preparation (2008).

Current Work on EAQCC Quantum Check Matrix Shifted Symplectic Product Matrix (special form) •

Current Work on EAQCC Quantum Check Matrix Shifted Symplectic Product Matrix (special form) • Have finished Alice’s encoding for a general EAQCC • Have finished Bob’s decoding circuit method.

Three-Party EA Codes

Three-Party EA Codes

Non-Additive EA Codes Ground Subspace Unencoded Subspaces Have encoding circuit for classical indices j

Non-Additive EA Codes Ground Subspace Unencoded Subspaces Have encoding circuit for classical indices j and one to encode the stabilizer (similar to Grassl and Roetteler) Grassl and Roetteler, ar. Xiv: 0801. 2144 (2008).

Conclusion and Future Work • Entanglement-assisted convolutional coding exploits entanglement to encode a stream

Conclusion and Future Work • Entanglement-assisted convolutional coding exploits entanglement to encode a stream of qubits • Importing classical convolutional coding theory produces high-performance quantum codes • Can convolutional quantum key distribution improve the Shor-Preskill noise threshold for BB 84?