Quantum Chemistry Revisited Powerpoint Templates Page 1 Wave

  • Slides: 16
Download presentation
Quantum Chemistry Revisited Powerpoint Templates Page 1

Quantum Chemistry Revisited Powerpoint Templates Page 1

Wave Equation Non Relativistic Limit Possible solution: Plane waves Powerpoint Templates Page 2

Wave Equation Non Relativistic Limit Possible solution: Plane waves Powerpoint Templates Page 2

Powerpoint Templates Page 3

Powerpoint Templates Page 3

Time Independent Schrödinger Equation Powerpoint Templates Page 4

Time Independent Schrödinger Equation Powerpoint Templates Page 4

Time dependent Schrödinger Equation Powerpoint Templates Page 5

Time dependent Schrödinger Equation Powerpoint Templates Page 5

Lousy relativistic equation 2 nd derivative in space 1 st derivative in time Many

Lousy relativistic equation 2 nd derivative in space 1 st derivative in time Many fathers equation (Klein, Fock, Schrödinger, de Broglie, . . . ) Klein-Gordon Equation (1926) Powerpoint Templates Page 6

(E – V)2 = p 2 c 2 + m 2 c 4 Free

(E – V)2 = p 2 c 2 + m 2 c 4 Free Electron (V = 0) Powerpoint Templates Page 7

Klein-Gordon Equations Eigen values for E 2 ± E solutions Matter Antimatter Carl Anderson

Klein-Gordon Equations Eigen values for E 2 ± E solutions Matter Antimatter Carl Anderson discovers the positron in 1932 KG works well for bosons (integer spin particles) Powerpoint Templates Page 8

a=b=1 ab + ba = 0 Powerpoint Templates Page 9

a=b=1 ab + ba = 0 Powerpoint Templates Page 9

3 dimensions and time Powerpoint Templates Page 10

3 dimensions and time Powerpoint Templates Page 10

Dirac Equation 2 positive solutions 2 negative solutions Matter / Antimatter Spin ± ½

Dirac Equation 2 positive solutions 2 negative solutions Matter / Antimatter Spin ± ½ Powerpoint Templates Page 11

Pauli Matrices Powerpoint Templates Page 12

Pauli Matrices Powerpoint Templates Page 12

Powerpoint Templates Page 13

Powerpoint Templates Page 13

Powerpoint Templates Page 14

Powerpoint Templates Page 14

Powerpoint Templates Page 15

Powerpoint Templates Page 15

ØThere cant be flow in pure real and pure imaginary wave functions. ØIn stationary

ØThere cant be flow in pure real and pure imaginary wave functions. ØIn stationary states the flow is either zero or constant. Ødiv D = ρ implies that stationary states create static electric fields. Ørot H = J + D/ t implies that stationary states with J≠ 0 create static magnetic fields. ØStatic magnetic fields induce currents J which create induced magnetic fields. ØTime dependent magnetic fields induce time dependent electric fields (rot E = - B/ t), which means time dependent charge densities to which correspond non stationary states. Powerpoint Templates Page 16