Quantifiers An important mathematical concept Is this true

  • Slides: 62
Download presentation
Quantifiers An important mathematical concept

Quantifiers An important mathematical concept

 • Is this true? Yes No Something else

• Is this true? Yes No Something else

 • Is this true? Yes No Something else

• Is this true? Yes No Something else

 • Is this true? Yes No Something else That’s why Epp always gives

• Is this true? Yes No Something else That’s why Epp always gives domain!

 • Yes No Something else

• Yes No Something else

 • Yes No Something else

• Yes No Something else

“For all” •

“For all” •

“For all” •

“For all” •

“For all” •

“For all” •

“For all” •

“For all” •

“For all” • True False Something else

“For all” • True False Something else

“For all” • True False Something else

“For all” • True False Something else

Nesting quantifiers •

Nesting quantifiers •

Nesting quantifiers •

Nesting quantifiers •

Nesting quantifiers •

Nesting quantifiers •

Nesting quantifiers •

Nesting quantifiers •

Nesting quantifiers •

Nesting quantifiers •

Alternating nested quantifiers •

Alternating nested quantifiers •

Alternating nested quantifiers •

Alternating nested quantifiers •

Finding domains •

Finding domains •

Finding domains •

Finding domains •

Finding domains •

Finding domains •

Finding domains •

Finding domains •

Finding domains •

Finding domains •

Finding domains •

Finding domains •

Finding domains •

Finding domains •

Some notation •

Some notation •

Examples • True False Something else

Examples • True False Something else

Examples • True False Something else

Examples • True False Something else

Examples • True False Something else Make sure you understand the order of parentheses

Examples • True False Something else Make sure you understand the order of parentheses ( (, ) ) and square brackets ([, ])!

Examples • Statement: Every even integer above 2 can be expressed as the sum

Examples • Statement: Every even integer above 2 can be expressed as the sum of two primes. True False Something else

Examples • True False Something else

Examples • True False Something else

Existential statements •

Existential statements •

Proving Existential Statements true •

Proving Existential Statements true •

Proving Existential Statements false •

Proving Existential Statements false •

Proving Existential Statements false •

Proving Existential Statements false •

Proving Universal Statements true or false • False: Similar to proving an existential statement

Proving Universal Statements true or false • False: Similar to proving an existential statement true. • The witness this is this case is known as the counterexample. • True: Similar to proving an existential statement false. • Proving universal statements true is pretty much all of math.

Negated Quantifiers • It is not the case that Alice comes to all office

Negated Quantifiers • It is not the case that Alice comes to all office hours. • There is an office hour that Alice does not come to. Equiv. Not equiv. Something else

Negated Quantifiers • It is not the case that Alice comes to all office

Negated Quantifiers • It is not the case that Alice comes to all office hours. • There is an office hour that Alice does not come to. Equiv. Not equiv. Something else

Negated Quantifiers • We can therefore reach the following logical equivalences:

Negated Quantifiers • We can therefore reach the following logical equivalences:

Negating nested quantifiers •

Negating nested quantifiers •

Negating nested quantifiers •

Negating nested quantifiers •

Negating nested quantifiers •

Negating nested quantifiers •

Negating nested quantifiers •

Negating nested quantifiers •

Negating nested quantifiers •

Negating nested quantifiers •

Another example •

Another example •

Another example •

Another example •

Another example •

Another example •

Another example •

Another example •

Another example •

Another example •

Another example •

Another example •

Negating the statement • How do we negate an implication?

Negating the statement • How do we negate an implication?

Negating implications •

Negating implications •

Back to our example •

Back to our example •

Back to our example •

Back to our example •

Back to our example •

Back to our example •

Back to our example •

Back to our example •