Pythagoras, Trigonometry or Angles? Interleaved Practice These resources have been used as AO 1 practice for revision of right-angled triangles, but primarily as interleaved practice with simple figures leading students to making decisions about whether or not we need Pythagoras, trigonometry or angle sums to 180 o Prior knowledge needed: - Sum of interior angles in a triangle is 180 o - Using Pythagoras’ theorem to find hypotenuse and catheti - Using the three main trigonometric ratios to calculate side lengths and angles - Basic notation conventions that demonstrate equal length sides Sheet 1: Mixture of different right-angled triangles with Sheet 2: Some of the triangles are the same but asking about a different aspect of it to alter the maths applied to find the answer [All solutions have been provided to 2 decimal places]
c 6 cm 10 mm a 70 o b 10 m 8 m 50 o 2. 5 ft 6 mm 15 o 35 o g 2 ft 24 m 15 ft d i 50 o e j k f 40 o m 10 mm r 12 cm 25 m q p 6 m 13 cm n 7 m 2 cm 15 m
u s 10 mm t 66 o 15 m 36 m z 6 ft 52 o 6 mm 18 o 9 ft y 11 cm 7 mm 75 o x v a w 7 ft 30 m 25 o d 20 m b 22 o 8 cm 12 cm 10 cm 58 o e 40 o f 47 o c 2 cm 9 m 12 m 10 cm g
23. 39 m 8 mm 70 o cm 15 10 mm 7. 6 cm 10 m 8 m 50 o 2. 5 ft 6 mm ft 24 m 21. 15 ft 82 m 25 2. 15 o 35 o 50 o ft 60 40 o 8. 40 o 45 o 14. 14 mm 75 o 14. 3 0 cm 51. 53 o 10 mm 12 cm 23. 58 o 12 cm 25 m 5 cm 6 m 13 cm 40. 60 o 2 cm 7 m 15 m
39 m 36. 87 o 10 mm 24 o 66 o 15 m 36 m 68 o 6 ft 52 o 6 mm 18 o 9 ft 1 m . 2 7 ft 21 05 . 27 57. 13 o mm 4. 11. 57 cm 7 mm 75 o t f 73 11 cm 30 m 25 o 19. 2 0 cm 20 m 9. 33 m 22 o 8 cm 58 o 12 m cm 38 10 cm 2. 12 cm 9 m 40 o 10 cm 47 o 6. 82 cm 53. 13 o 48. 59 o