Properties of parametric Xray radiation PXR and its

  • Slides: 46
Download presentation
Properties of parametric X-ray radiation (PXR) and its applications A. V. Shchagin Kharkov Institute

Properties of parametric X-ray radiation (PXR) and its applications A. V. Shchagin Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine Belgorod State University, Belgorod 308015, Russia Laboratory of Linear Accelerators, 91898 Orsay, France E-mail: shchagin@kipt. kharkov. ua , S Seminaire du Laboratoire de l’Accelerateur Lineaire, November 10, 2015, LAL, Orsay, France

Outline: 1. Radiation of relativistic charged particles in solid targets 2. PXR history and

Outline: 1. Radiation of relativistic charged particles in solid targets 2. PXR history and reviews 3. What is the parametric X-ray radiation ? 4. Main properties of the PXR 5. Examples of experimental research of the PXR properties 6. About some possibilities for research and applications of PXR 7. Examples of organization of research area at Linac + Storage ring complexes

Different kinds of X-ray and gamma- radiation of relativistic charged particles in a solid

Different kinds of X-ray and gamma- radiation of relativistic charged particles in a solid target Radiation of relativistic charged particles in an amorphous target Radiation of relativistic charged particles in a crystalline target

History of PXR First theoretical predictions of the PXR Ya. B. Fainberg, N. A.

History of PXR First theoretical predictions of the PXR Ya. B. Fainberg, N. A. Khizhnyak JETP 1957 M. L. Ter-Mikaelian, book, 1969 – X-rays First experimental observations of the PXR Tomsk, 1985 Kharkov, 1988 Research: USA, Japan, France, Germany, Russia, Ukraine, Belarus

Some reviews about PXR properties and investigations 1. M. L. Ter-Mikaelian, Electromagnetic radiation processes

Some reviews about PXR properties and investigations 1. M. L. Ter-Mikaelian, Electromagnetic radiation processes in periodic media at high energies, Uspekhi Fizicheskikh Nauk, 171, 597 -624 (2001) [in Russian]. Physics-Uspekhi 44, 571 -596 (2001) [in English]. 2. A. V. Shchagin, X. K. Maruyama, Parametric X-rays, in: Accelerator-based atomic physics technique and applications, eds. S. M. Shafroth, J. C. Austin (AIP Press, New York, 1997) pp. 279 -307. 3. Rullhusen, A. Artru, P. Dhez, Novel radiation sources using relativistic electrons, World Scientific Publishers, Singapore, 1998. 4. Potylitsyn A P Electromagnetic Radiation of Electrons in Periodic Structures (Springer, 2010)] 5. A. V. Shchagin, Fresnel coefficients for parametric X-ray (Cherenkov) radiation, Uspekhi Fizicheskikh Nauk 185, 885 - 894 (2015) - in Russian so far

The Huygens construction for generation of Cherenkov radiation

The Huygens construction for generation of Cherenkov radiation

The Huygens construction for generation of PXR

The Huygens construction for generation of PXR

PXR as a diffraction of virtual photons PXR reflection

PXR as a diffraction of virtual photons PXR reflection

Common schemes for generation of PXR reflection Laue geometry Bragg geometry

Common schemes for generation of PXR reflection Laue geometry Bragg geometry

Experimental setup for measurements of the PXR differential properties at electron beam energy 15.

Experimental setup for measurements of the PXR differential properties at electron beam energy 15. 7 – 25. 7 Me. V, Kharkov 1990

Registration efficiency of the Si(Li) X-ray detector with Pb diaphragm of diameter 3. 7

Registration efficiency of the Si(Li) X-ray detector with Pb diaphragm of diameter 3. 7 mm as a function of the photon energy

Spectrum of X-ray radiation measured at observation angle 142. 9 mrad at electron beam

Spectrum of X-ray radiation measured at observation angle 142. 9 mrad at electron beam energy 25. 0 Me. V from Si crystal with angular resolution 1 mrad Shchagin A. V. , Pristupa V. I. , Khizhnyak N. A. Phys. Lett. A 148, 485 -488 (1990).

Smooth tuning of the energy of the PXR spectral peak. Spectra of X-ray radiation

Smooth tuning of the energy of the PXR spectral peak. Spectra of X-ray radiation measured at different angles of the crystal rotation at electron beam energy 25 Me. V.

PXR spectral peak energy as a function of the angle of crystal rotation. The

PXR spectral peak energy as a function of the angle of crystal rotation. The row effect for PXR spectral peak has observed up to 400 ke. V Morokhovskii V L, Shchagin A V Soviet Physics Technical Physics 35 623 (1990)] .

Absolute differential yield of the PXR in the PXR reflection Shchagin A. V. ,

Absolute differential yield of the PXR in the PXR reflection Shchagin A. V. , Khizhnyak N. A. Nucl. Instr. and Meth В 119, 115 -122 (1996)

Differential PXR yield in both maxima as a function of the electron beam energy

Differential PXR yield in both maxima as a function of the electron beam energy Manifestation of the density effect for the PXR is at

Angular size of the PXR reflection as a function of the electron beam energy

Angular size of the PXR reflection as a function of the electron beam energy Manifestation of the density effect for the PXR is at

Angular distribution of the yield in the PXR reflection Fiorito R. B. , Rule

Angular distribution of the yield in the PXR reflection Fiorito R. B. , Rule D. W. , Piestrup M. A. , Maruyama X. K. , Silzer R. M. , Skopik D. M. , Shchagin A. V. Phys. Rev. E 51( 1995) R 2759 -R 2762. 230 Me. V, 20 um Si (220), observ. angle 90 degrees Y. Takabayashi, A. V. Shchagin NIM B 278 (2012) 78 -81. E=255 Me. V, 20 um Si (220), observ. angle 32 degrees

A fine structure of the PXR reflection A. V. Shchagin, V. V. Sotnikov VANT

A fine structure of the PXR reflection A. V. Shchagin, V. V. Sotnikov VANT 4(6) 316 (2008)

The X-ray locator for control of nuclear materials nonproliferation based on PXR ≥ 121.

The X-ray locator for control of nuclear materials nonproliferation based on PXR ≥ 121. 8 ke. V ~ 100 ke. V The main disadvantage – attenuation of X-rays in surrounding materials

Applications of the locator and LINAC in space (General scheme of the space-based X-ray

Applications of the locator and LINAC in space (General scheme of the space-based X-ray generator. ) Solar array Spacecraft module Module of the replaceable targets Magnetic field gauge Target-radiator linac e– e– I+ Thrusters Positive ion source Collimator Goniometer PXR ICM Quadrupole lens Faraday cup Collimated radiation Solar array The following main components of the generator are shown: spacecraft module; solar battery array; fine-adjustment thruster; electron linac; positive ion source; electron beam control unit, including the magnetic field gauge, quadrupole lenses, induction electron beam current monitor (ICM) and the Faraday cup; the target set consisting of the goniometer, the target-radiator, and the module with replaceable additional targets; the device to collimate the emitted X-ray beam. The Faraday cup simultaneously serves as a charge compensator at the linac. The generated PXR reflection and its collimated radiation part are also shown.

. The number of K characteristic quanta arriving in 1 sec at the 100

. The number of K characteristic quanta arriving in 1 sec at the 100 cm 2 detector from the U target of area 1 cm 2. Electron beam energy 100 Me. V, current 100 u. A

Possibilities for measurement of nano-crystallites size with use of parametric X-ray radiation. A. V.

Possibilities for measurement of nano-crystallites size with use of parametric X-ray radiation. A. V. Shchagin, 2010 J. Phys. : Conf. Ser. 236 012020 One can measure crystallites sizes from tens to hundreds nanometers with use of the PXR spectral peak width

Measurements of texture of a polycrystal Experiment on PXR from Mo 10 um thick

Measurements of texture of a polycrystal Experiment on PXR from Mo 10 um thick foil polycrystal at 150 Me. V REFER ring at Hiroshima University

X-ray spectra from 10 mkm thick Mo textured polycrystal. Y. Takabayashi, I. Endo, K.

X-ray spectra from 10 mkm thick Mo textured polycrystal. Y. Takabayashi, I. Endo, K. Weda, C. Moriyoshi, A. V. Shchagin, NIMB B 243, 453 -456 (2006).

The yield and the spectral peak energy of PXR from textured Mo polycrystal NIMB

The yield and the spectral peak energy of PXR from textured Mo polycrystal NIMB B 243, 453 -456 (2006).

The Huygens construction for focusing the PXR wave train A. V. Shchagin, JETP Letters,

The Huygens construction for focusing the PXR wave train A. V. Shchagin, JETP Letters, 80, 535 -540 (2004). Proton beam 70 -450 Ge. V The X-ray wavetrain length can be a few cm!

Properties of CXR and focused PXR induced by 70 and 450 Ge. V protons.

Properties of CXR and focused PXR induced by 70 and 450 Ge. V protons. Si crystal size is 50*0. 3 mm. X-ray detector square is 1 cm 2 Table

PXR from channeling and non-channeling beams can be observed separately. Bent crystallographic plane at

PXR from channeling and non-channeling beams can be observed separately. Bent crystallographic plane at 45 o nonchannaling particle R/ Concentration 2 of PXR from nonchanneling particle R Focus of PXR from channeling particles

Scheme for application of PXR for diagnostics of interaction of highenergy proton beam and

Scheme for application of PXR for diagnostics of interaction of highenergy proton beam and deflecting crystal (e. g. CERN, Protvino) The observation of PXR and CXR is the best way for online diagnostics of beam-crystal system

Experiment in CERN Phys. Lett. B 701(2011)180 Spectrum of X-ray radiation Experimental setup

Experiment in CERN Phys. Lett. B 701(2011)180 Spectrum of X-ray radiation Experimental setup

Experiment in Protvino, Russia Problems of Atomic Science and Technology, Series “Plasma electronics and

Experiment in Protvino, Russia Problems of Atomic Science and Technology, Series “Plasma electronics and new methods of acceleration” № 4(86) (2013) 315 -319. Experimental setup Fig. 1. The experimental layout at accelerator U 70. The proton beam of energy 50 Ge. V is extracted from the circle by a bent crystal BC. Then, the beam passes two bending magnets BM 2, BM 1, collimator C, target T. The number of protons in the beam is calculated by a scintillated counter B. The X-ray radiation and the background radiation is measured by the detector D that is shown in two positions.

Observation of parametric X-ray radiation in Protvino, protons 50 Ge. V The experimental setup

Observation of parametric X-ray radiation in Protvino, protons 50 Ge. V The experimental setup for the PXR measurements Spectra without background subtraction measured when the PXR reflection is directed towards the detector (a) and when the PXR reflection is aligned aside from the detector (b). The arrow shows the PXR spectral peak

 Diagnostics of crystal-radiator of positrons by backward going PXR in KEK A. V.

Diagnostics of crystal-radiator of positrons by backward going PXR in KEK A. V. Shchagin, Nuovo Cimento C 34 (2011) 181 -190. Acceleration of crystal alignment, control of beam-crystal interaction

Phase-contrast imaging at synchrotron beam [A. Snigirev, I. Snigireva, Rev. Sci. Instrum. 66(1995)5486 -5492].

Phase-contrast imaging at synchrotron beam [A. Snigirev, I. Snigireva, Rev. Sci. Instrum. 66(1995)5486 -5492]. The length of the facility is about 50 m.

Obtaining of shadow images with PXR, 2005 Nihon University, Japan

Obtaining of shadow images with PXR, 2005 Nihon University, Japan

Application of PXR for obtaining of phasecontrast images, 2012 г Nihon University

Application of PXR for obtaining of phasecontrast images, 2012 г Nihon University

Phase-contrast imaging with PXR X-ray beam The length of the facility is about 2

Phase-contrast imaging with PXR X-ray beam The length of the facility is about 2 -5 m. Coherent properties of the PXR are not studied well so far!

Coherent length of the PXR Laue geometry Bragg geometry

Coherent length of the PXR Laue geometry Bragg geometry

The setup for calibration of X-ray space telescopes at distance 518 m Shchagin A.

The setup for calibration of X-ray space telescopes at distance 518 m Shchagin A. V. , Khizhnyak N. A. , Fiorito R. B. , Rule D. W. and Artru X. Parametric X-ray radiation for calibration of X-ray space telescopes and generation of several X-ray beams, NIM B 173(2001)154 -159. 518 m

Parametric X_ray radiation as a beam size monitor with use of Fresnel zone plates

Parametric X_ray radiation as a beam size monitor with use of Fresnel zone plates (FZP)

 Measuring beam profiles using a parametric X-ray pinhole camera

Measuring beam profiles using a parametric X-ray pinhole camera

Some perspective for research and applications of the PXR ¡ ¡ ¡ ¡ For

Some perspective for research and applications of the PXR ¡ ¡ ¡ ¡ For obtaining of the phase-contrast images For measurements of the texture structure For control of interaction of high-energy proton beam with deflecting crystal (CERN, Protvino) For control of positron crystalline convertor (KEK) For measurements of nano-crystallites size For measurement of the beam profile For calibration of X-ray space telescopes

Organization of research of radiation from solid targets in SAGA light source. Energy of

Organization of research of radiation from solid targets in SAGA light source. Energy of accelerated electron beam is 255 Me. V from linear accelerator Organization of research of radiation from solid targets in Hiroshima University at REFER ring. Energy of accelerated electron beam in the ring is 150 Me. V I think, similar research area can be organized at Thome. X in LAL with electron beam energy 50 – 70 Me. V

Some possibilities for emission of X-ray and gammaradiation from solid targets at Thom. X

Some possibilities for emission of X-ray and gammaradiation from solid targets at Thom. X at energy 50 -70 Me. V 1. Characteristic X-ray radiation 2. Transition radiation and resonant transition radiation 3. Bremsstrahlung 4. Parametric X-ray radiation 5. Channeling radiation 6. Coherent bremsstrahlung 50 Me. V > 3 ke. V, up to 120 ke. V < 5 ke. V from tens of ke. V to tens of Me. V >5 ke. V, up to hundreds ke. V tens of ke. V from tens of ke. V to tens of Me. V

References 1. Борн М, Вольф Э Основы оптики (М. : Наука, 1973) [Born M,

References 1. Борн М, Вольф Э Основы оптики (М. : Наука, 1973) [Born M, Wolf E Principles of Optics (Oxford – London – Edinburg – New York – Paris – Frankfurt : Pergamon Press, 1968)] 2. Jackson J D Classic Electrodynamics (John Wiley & Sons, Inc. , 1999) 3. Франк И М УФН 87 189 (1965) [Frank I M Sov. Phys. Usp. 8 729 (1966)] 4. Гинзбург В Л, Цытович В Н Переходное излучение и переходное рассеяние (М. : Наука, 1984) [Ginzburg V L, Tsytovich V N Transition Radiation and Transition Scattering, (Bristol (UK): Hilger, 1990)] 5. Тер-Микаелян М Л Влияние среды на электромагнитные процессы при высоких энергиях (Ереван: Издательство АН Армянской ССР, 1969) [Ter-Mikaelian M L High-Energy Electromagnetic Processes in Condensed Media (New York: Wiley-Interscience, 1972)] 6. Тер-Микаелян М Л УФН 171 597 (2001) [Ter-Mikaelian M L Sov. Phys. Usp. 44 571 (2001)] 7. Файнберг Я Б, Хижняк Н А ЖЭТФ 32, 883 (1957) [Fainberg Y B, Khizhnyak N A Sov. Phys. JETP 5 720 (1957)] 8. Nitta H Phys. Lett. A 158 270 (1991) 9. Shchagin A V, Maruyama X K Parametric X-rays, in: Accelerator-Based Atomic Physics Techniques and Applications (Eds S M Shafroth, J C Austin) (New York: AIP Press, 1997) pp. 279 -307 10. Потылицын А П Излучение электронов в периодических структурах (Томск: НТЛ, 2009) [Potylitsyn A P Electromagnetic Radiation of Electrons in Periodic Structures (Springer, 2010)] 11. Базылев В А, Жеваго Н К Излучение быстрых частиц в веществе и во внешних полях (М. : Наука 1987) 12. Potylitsyn A P, Vnukov I E Parametric X-ray radiation, transition radiation, and bremsstrahlung in X-ray region. A comparative analysis, in: Electron-Photon Interaction in Dense Media NATO Science Series, II. Mathematics, Physics and Chemistry Vol. 49 (Ed. H Wiedemann) (Dordrecht / Boston / London : Kluwer Academic Publishers, 2002) pp. 25 -47 13. Als-Nielsen Jens, Nc. Morrow Des, Elements of Modern X-ray Physics Second Edition, (John Willey & Sons, Ltd. , 2011) 14. Жданов Г С, Илюшин А С, Никитина С В Дифракционный и резонансный структурный анализ (М. : Наука 1980) 15. Пинскер З Г Рентгеновская кристаллооптика (М. : Наука, 1982) [Pinsker Z G Dynamical Scattering of X-Rays in Crystals (New York: Springer, 1978)] 16. Shchagin A V Radiation Physics and Chemistry 61 283 (2001) 17. Shchagin A V, Khizhnyak N A Nucl. Instrum. Methods B 119 115 (1996) 18. Shchagin A V, Pristupa V I, Khizhnyak N A Phys. Lett. A 148 485 (1990) 19. Shchagin A V Investigations and Properties of PXR, in: Electron-Photon Interaction in Dense Media NATO Science Series, II. Mathematics, Physics and Chemistry Vol. 49 (Ed. H Wiedemann) (Dordrecht / Boston / London, Kluwer Academic Publishers, 2002) pp. 133 -151 20. Мороховский В Л, Щагин А В ЖТФ 60 147 (1990) [Morokhovskii V L, Shchagin A V Soviet Physics Technical Physics 35 623 (1990)] 21. Shchagin A V Journal of Physics: Conference Series 236 012020 (2010) 22. Brenzinger K-H et al. Phys. Rev. Lett. 79 2462 (1997) 23. Шульга Н Ф, Табризи М Письма в ЖЭТФ 76 337 (2002) [Shul’ga N F, Tabrizi M JETP Letters 76 279 (2002)] 24. Щагин А В Письма в ЖЭТФ 80 535 (2004) [Shchagin A V JETP Letters 80 469 (2004)] 25. Shchagin A V Diffraction, extraction and focusing of parametric X-ray radiation, channeling radiation and crystal undulator radiation from a bent crystal, in: Advanced radiation sources and application NATO Science Series, II. Mathematics, Physics and Chemistry Vol. 199 (Ed. H Wiedemann) (Springer, 2006) pp. 27 -45 26. Shchagin A V, Takabayashi Y Nucl. Instrum. Methods B 309 198 (2013) 27. Brenzinger K-H et al. Z. Phys. A 358 107 (1997) 28. Takabayashi Y, Shchagin A V Nucl. Instrum. Methods B 278 78 (2012) 29. Shchagin A V, Pristupa V I, Khizhnyak N A Nucl. Instrum. Methods B 99 277 (1995) 30. Sones B, Danon Y, Block R C Nucl. Instrum. Methods B 227 22 (2005) 31. Fiorito R B, Rule D W, Piestrup M A, Maruyama X K, Silzer R M, Skopik D M, Shchagin A V Phys. Rev. E 51 R 2759 (1995) 32. Щагин А В, Сотников В В Вопросы атомной науки и техники, Серия «Плазменная электроника и новые методы ускорения» 4(6) 316 (2008) 33. Shchagin A V Phys. Lett. A 247 27 (1998) 34. Morokhovskii V V et al. Phys. Rev. Lett. 79 4389 (1997) 35. Барышевский В Г, Феранчук И Д ЖЭТФ 61 994 (1971) [Baryshevsky V G, Feranchuk I D Sov. Phys. JETP 34 502 (1972)] 36. Гарибян Г М, Ян Ши ЖЭТФ 61 930 (1971) [Garibian G M, Yang C Sov. Phys. JETP 34 495 (1972)] 37. Baryshevsky V G Nucl. Instrum. Methods B 122 13 (1997) 38. Artru X, Rullhusen P Nucl. Instrum. Methods B 145 1 (1998), addendum ibid B 173 16 (2001) 39. Nitta H J. Phys. Soc. Jpn. 69 3462 (2000) 40. Backe H et al. Nucl. Instrum. Methods B 234 138 (2005) 41. Алейник А Н и др. Письма в ЖЭТФ 80 447 (2004) [Aleinik A N et al. JETP Lett. 80 339 (2004)] 42. Щагин А В Вестник харьковского национального университета, серия физическая, “Ядра, частицы, поля” 3/39/ 91 (2008) 43. Shchagin A V Phys. Lett. A 262 383 (1999) Thanks for attention!