PROJECTILES LAUNCHED AT AN ANGLE PROJECTILE MOTION EQUATIONS

  • Slides: 3
Download presentation
PROJECTILES LAUNCHED AT AN ANGLE PROJECTILE MOTION EQUATIONS HORIZONTAL MOTION Vx = velocity in

PROJECTILES LAUNCHED AT AN ANGLE PROJECTILE MOTION EQUATIONS HORIZONTAL MOTION Vx = velocity in horizontal direction given Vi, q Dx = Vx Dt distance in horizontal direction given Vi, q, Dt Vx = Dx/ Dt Dx = Dt = ANGULARLY LAUNCHED PROJECTILE MOTION EQUATIONS VERTICAL MOTION OBJECT WITH INITIAL VELOCITY (Vi ≠ 0) Vy = velocity in vertical direction given Vi, q from Vf = Vi - g. Dt Vfy = Visin. Q - (g. Dt) velocity at midpoint = 0 (Vy =0) and Dt is ½ (half)

PROJECTILES LAUNCHED AT AN ANGLE PROJECTILE MOTION EQUATIONS from Vf = √(Vi 2 +

PROJECTILES LAUNCHED AT AN ANGLE PROJECTILE MOTION EQUATIONS from Vf = √(Vi 2 + 2 a. Dy) Vfy = √ Vi 2 sin. Q 2 -(2 g. Dy) from Dy = Vi Dt - ½(g. Dt 2) Dy = Visin. Q Dt -1/2(g. Dt 2) at midpoint Vy = 0 and Dt = 1/2 Vy = Visin. Q - (g. Dt) = 0 and Dt = Dx/Vicos. Q Visin. Q = (g. Dt) Visin. Q = 1/2(g. Dt) using algebra at midpoint Dt = 1/2 Vi = 1(g. Dt) 2 sin. Q using algebra Vi = 1(g. Dx) 2 sin. QVicos. Q substituting Dt Vi 2 = (g. Dx) 2 sin. Qcos. Q Vi = SQRT (g. Dx) 2 sin. Qcos. Q using algebra initial velocity given. Dx, Q

PROJECTILES LAUNCHED AT AN ANGLE PROJECTILE MOTION EQUATIONS Dt for total trip of projectile

PROJECTILES LAUNCHED AT AN ANGLE PROJECTILE MOTION EQUATIONS Dt for total trip of projectile at landing where Dy = 0 from Dy = Vi sin. QDt - ½(g. Dt 2) 0 = Vi sin. QDt - ½(g. Dt 2) - Vi sin. QDt = - ½(g. Dt 2) 2 Vi sin. QDt = Dt 2 g Dy = 0 at end of trip using algebra negative sign drops out of equation Dt = 2 Vi sin. Q g Dt = 2 Vy g where Vyand g are both positive