Project Scheduling 1 Critical Path Method CPM 1














































![Project Duration Calculations ההתפלגות הנורמלית P(T t)=P[(T- )/ (t- )/ ]=P[z (t- )/ ] Project Duration Calculations ההתפלגות הנורמלית P(T t)=P[(T- )/ (t- )/ ]=P[z (t- )/ ]](https://slidetodoc.com/presentation_image_h2/e45094ab3f53cb0765da1a1bd2ff645e/image-47.jpg)









- Slides: 56

Project Scheduling (1) Critical Path Method (CPM) 1

2



השיטות העיקריות 1. CPM – Critical Path Method (deterministic) 2. PERT – Project Evaluation and Review Technique (allows uncertainty) 5



8 מהם הקשרים בין הפעילויות? 18: 00 17: 30 17: 00 16: 30 16: 00 15: 30 15: 00 14: 30 14: 00 13: 30 13: 00 12: 30 12: 00 Gantt Chart: A B C D E

רשת פעילויות : תיאור הפרויקט כרשת Activities on Arrows – AOA A 2 C 1 4 B 3 E 5 D Activities on Nodes – AON A n n C 0 E B D 9

10




Project Data Sheet (Example) פעילות תיאור קדימות ישירה משך A Perform market survey - 3 B Design graphic icons A 4 C Develop flowchart A 2 D Design input/output screens B, C 6 E Module 1 coding C 5 F Module 2 coding C 3 G Module 3 coding E 7 H Module 4 coding E, F 5 I Merge modules and graphics and test program D, G, H 8 14

הצגת הפרויקט ברשת A on A B 1 A 3 2 D 7 P 1 C E 4 F I 8 G 5 P 2 H 6 15



Project Data Sheet (Example) WP ti קדימות ES EF LS LF Slack A 3 -- 0 3 0 B 4 A 3 7 7 11 4 C 2 A 3 5 0 D 6 B, C 7 13 11 17 4 E 5 C 5 10 0 F 3 C 5 8 9 12 4 G 7 E 10 17 0 H 5 E, F 10 15 12 17 2 I 8 D, G, H 17 25 0 Critical Path Length = CPL = max EFi = 25 Slacki = LSi - ESi = LFi - EFi 18

PERT Chart With Critical Path B, 4 A, 3 D, 6 E, 5 C, 2 G, 7 I, 8 H, 5 F, 3 The Critical Path: A C E G I 19

Gantt Chart: Early Start Scheduling 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 12 20 21 22 23 A B slack C slack D E F slack G H slack I 20 24 25

Solving Critical Path Problems with Linear Programming Latest start times ונקצ ית מ טרה Earliest start times פ איל וצים 21

Example B 1 A 2 3 D 7 P 1 C E 4 F I 8 G 5 P 2 H 6 22




) Project Data Sheet (Example עלות קיצור בשבוע עלות מקסימלית עלות נורמלית משך מינימלי משך נורמלי קדימות פעילות 1, 000 3, 000 1 3 - A 2, 000 6, 000 4, 000 3 4 A B - 2, 000 2 2 A C 1, 500 6, 000 3, 000 4 6 B, C D 1, 300 3, 800 2, 500 4 5 C E 1, 500 3, 000 1, 500 2 3 C F 1, 200 8, 100 4, 500 4 7 E G 600 3, 000 4 5 E, F H 1, 600 12, 800 8, 000 5 8 D, G, H I 48, 300 29, 500 26 Total

Early Start Scheduling 1 A 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 12 20 21 22 23 24 25 333 333 B 1000 C 1000 D 500 500 500 E 500 500 500 F 500 500 G 643 643 H 600 600 600 I Tot 18 1000 1000 333 333 2000 1500 1000 1743 1243 643 1000 1000 Critical Path A C E G I 27

Duration & Cost for Normal n n n Total duration: 25 weeks Overhead cost is 1, 500 per time unit Overhead cost: 25 1, 500=37, 500 Direct cost: 29, 500 Normal cost: 29, 500+37, 500=67, 000 28

עלויות עבור זמנים מינימליים WP Min ti קדימות ES EF LS LF TF A 1 -- 0 1 0 B 3 A 1 4 4 7 3 C 2 A 1 3 0 D 4 B, C 4 8 7 11 3 E 4 C 3 7 0 F 2 C 3 5 5 7 2 G 4 E 7 11 0 H 4 E, F 7 11 0 I 5 D, G, H 11 16 0 30



A Was Crashed In 2 Time Units 23 22 21 20 19 18 17 16 11 15 14 13 12 643 643 643 600 600 10 5 4 3 2 1 9 8 7 6 500 500 643 G 600 H 300 0 1000 B 1000 C D 500 500 E 500 500 F I 1000 1000 643 1000 1000 33 A 300 2000 1500 1000 1743 1243 643 0 זמן הפרויקט מופחת ל 23 - שבועות. המסלול הקריטי נותר – A, C, E, G, I חסכון בעלויות העקיפות (25 -23)*1, 500 = 2*1, 500 = 3, 000 : תוספת של עלויות ישירות 31, 500 – 29, 500 = 2, 000 : ההפחתה כדאית. Tot

Project Data Sheet (Optimal) WP Nr. D. Fin. D Min D. Nr. C C. / D. Fin. C A 3 1 1 1, 000 3, 000 B 4 4 3 4, 000 2, 000 4, 000 C 2 2, 000 - 2, 000 D 6 6 4 3, 000 1, 500 3, 000 E 5 4 4 2, 500 1, 300 3, 800 F 3 3 2 1, 500 G 7 5 4 4, 500 1, 200 6, 900 H 5 5 4 3, 000 600 3, 000 I 8 8 5 8, 000 1, 600 8, 000 Total 29, 500 35, 200 39

Duration & Cost for Crash n n Overhead cost is 1, 500 per time unit Direct cost: 35, 200 ¡ n Overhead cost: 20 1, 500=30, 000 ¡ n n Direct cost increase: 35, 200 -29, 500=5, 700 Overhead cost reduction: 37, 500 -30, 000=7, 500 Optimal cost: 35, 200+30, 000=65, 200 Cost Reduction: 67, 000 -65, 200=1, 800 40

Time-Cost Chart 41

Solving the Cost-Time Problem: Linear Programming פונקצית מטרה אילוצים 42

Example Activity Node Representation aij bij Mij Nij A (1, 2) 4, 000 1 3 B (2, 3) 12, 000 3 4 C (2, 4) 2, 000 -- 2 2 D (3, 7) 12, 000 1, 500 4 6 E (4, 5) 9, 000 1, 300 4 5 F (4, 6) 6, 000 1, 500 2 3 G (5, 7) 12, 900 1, 200 4 7 H (6, 7) 6, 000 600 4 5 I (7, 8) 20, 800 1, 600 5 8 43

Example 44

Project Scheduling (2) PERT 45





Stochastic Scheduling (Example) נתון מחושב Activity a m b 2 A 2 3 4 3 0. 33 0. 11 B 2 4 10 4. 67 1. 33 1. 78 C 2 2 0. 00 0 D 4 6 12 6. 67 1. 33 1. 78 E 2 5 8 5 1. 00 F 2 3 8 3. 67 1. 00 G 3 7 10 6. 83 1. 17 1. 36 H 3 5 9 5. 33 1. 00 I 5 8 18 9. 17 2. 17 4. 69 50

PERT Chart With Critical Path B, 4. 67 A, 3 D, 6. 67 E, 5 C, 2 G, 6. 83 I, 9. 17 H, 5 F, 3. 67 In this example the critical path did not change even though the average times did change (from m to ) 51

![Project Duration Calculations ההתפלגות הנורמלית PT tPT t Pz t Project Duration Calculations ההתפלגות הנורמלית P(T t)=P[(T- )/ (t- )/ ]=P[z (t- )/ ]](https://slidetodoc.com/presentation_image_h2/e45094ab3f53cb0765da1a1bd2ff645e/image-47.jpg)
Project Duration Calculations ההתפלגות הנורמלית P(T t)=P[(T- )/ (t- )/ ]=P[z (t- )/ ] When: T~N( , ) P(z -a)=P(z ≥a) P(z -a)=1 -P(z <a) z~N(0, 1) (symmetric distribution) 53

54

Project Duration Calculations n מה ההסתברות שהפרויקט יארך 22 יום לכל היותר? מה ההסתברות שיארך יותר מ -28 יום? = ) P(T 22) =P(z (22 -26)/2. 68 P(z -1. 5)=P(z>1. 5)=1 -P(z 1. 5) =1 -0. 9332 =0. 0668 = ) P(T >28) =P(z > (28 -26)/2. 68 P(z >0. 75)=1 -P(z 0. 75) =1 -0. 7733 =0. 2267 55 n n

Project Duration Calculations P(T t) =0. 9 , t=? n n n P[z (t-26)/2. 68] =0. 9 (t-26)/2. 68 =Z 0. 9 (t-26)/2. 68 =1. 28 t-26 =3. 43 t=29. 43 56


Stochastic Scheduling (Example) WP True A 3 3. 4 B 4. 67 4 C 2 2 D 6. 67 7 E 5 3. 5 F 3. 67 5 G 6. 83 6. 2 H 5. 33 7. 2 I 9. 17 13 58

PERT Chart With Critical Path B, 4 A, 3. 4 D, 7 E, 3. 5 C, 2 G, 6. 2 I, 13 H, 7. 2 F, 5 In this example the critical path did change in true durations 59



ההסתברויות להשלמת הפרויקט עד t=43 n ACEGI=5+5+12+12+7=41 n ACEGI=√ 0. 13+1+1. 15+4. 4+1=2. 77 n BDFHI=3+10+10+10+7=40 n BDFHI=√ 0. 11+3. 1+0. 86+3+1=2. 84 n T=Max (TACEGI , TBDFHI) n P(T 43)=P(TACEGI 43) P(TBDFHI 43)= P[z (43 -41)/2. 77] P[z (43 -40)/2. 84]= P(z 0. 72) P(z 1. 05)=0. 7642 0. 8413=0. 6429 62
Cpm critical path method
Critical semi critical and non critical instruments
Semi critical
Critical path in project management
Critical path in project management
Network diagram for project x
Project management pert and cpm
Ms project 2010 tutorial
Conclusion of project work
Gantt chart symbols
Critical path method
Precedence diagram method examples
Contoh critical path method
Job scheduling vs process scheduling
Project management pert
Concurrent activity in project management
Priority rule for sequencing tasks
Unity signalr
Scheduling formula
Cam design
Aon critical path
Cpa critical path analysis
Find critical path
Find critical path
Project scheduling
Dummy activity in pert
Critical path initiative
The critical path
Critical path
Critical path
What is this called
Critical path length of task dependency graph
Compare non-critical readers with critical readers.
Sdm in project management
Compartmentalization interdependency effort validation r
Project scheduling in software engineering
Compartmentalization interdependency effort validation r
Cpu scheduling project
Project scheduling process
Project scheduling objectives
Compartmentalization interdependency effort validation r
Cpu scheduling project
Linear scheduling method
Advantages and disadvantages of symposium
Path sensitization method
4 p's of management spectrum
Activity on arrow
Cpm radiation
New si unit of roengton
Cpm örnek
Pert and cpm difference
Ngomsl
Mcdonalds case study strategic management
Cpm
Pert/cpm example problems with solutions doc
Dangling error in network
Cpm matrix