PRODUCTION OF TITANIUM FROM WASTE SLAG Samuel MartinTreceno

  • Slides: 15
Download presentation
PRODUCTION OF TITANIUM FROM WASTE SLAG Samuel Martin-Treceno 1, Thomas Hughes 1, Catherine Bishop

PRODUCTION OF TITANIUM FROM WASTE SLAG Samuel Martin-Treceno 1, Thomas Hughes 1, Catherine Bishop 2, Ian Brown 3, Yaodong Jia 3, Aaron Marshall 1, Matthew Watson 1 1 Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand 2 Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand 3 Callaghan Innovation, Lower Hutt, New Zealand https: //www. nzsteel. co. nz/products/aggregates/ 1

BACKGROUND TITANIUM METAL § Current commercial process limits widespread use (high cost, availability issues)

BACKGROUND TITANIUM METAL § Current commercial process limits widespread use (high cost, availability issues) § NZ potential to produce 37, 000 tonnes/year Ti from “waste” 2

BACKGROUND WASTE SLAG • Available at molten state • 200, 000 tonnes/year • 30

BACKGROUND WASTE SLAG • Available at molten state • 200, 000 tonnes/year • 30 wt. % Ti. O 2 http: //www. nzsteel. co. nz/new-zealand-steel/the-story-of-steel/the-steel-making-process/iron-making/ 3

BACKGROUND PRODUCTION OF TITANIUM Kroll [1] process FFC [2] process Precursor Ti. Cl 4

BACKGROUND PRODUCTION OF TITANIUM Kroll [1] process FFC [2] process Precursor Ti. Cl 4 Ti. O 2 Ti-bearing ore Year 1940 2000 ? Reductant Mg e- e- [1] W. J. Kroll, Trans. Electrochem. Soc. , 1940, 78, 35– 47. [2] G. Z. Chen, D. J. Fray and T. W. Farthing: Nature, 2000, 407, 361– 364. 4

GOAL OF THE RESEARCH 1 • want We to electrolyze that Reference electrode How

GOAL OF THE RESEARCH 1 • want We to electrolyze that Reference electrode How hard could it be? Anode Cathode oxygen evolution Titanium https: //www. nzsteel. co. nz/new-zealand-steel/the-story-of-steel/thescience-of-steel/the-ironmaking-process/ Crucible Molten slag 5

TECHNICAL CHALLENGES AT 1800 K Oxidation Before After Crucible failure Before After Circumferential crack

TECHNICAL CHALLENGES AT 1800 K Oxidation Before After Crucible failure Before After Circumferential crack The unofficial Laws of High Temperatures states: 1. ”At high temperatures everything reacts with everything else” 2. “They react bloody quickly and it gets exponentially worse as the temperature increases “ - Professor K. C. Mills 6

TECHNICAL CHALLENGES AT 1800 K Component* wt. % Ti. O 2 32. 5 Al

TECHNICAL CHALLENGES AT 1800 K Component* wt. % Ti. O 2 32. 5 Al 2 O 3 18. 5 Ca. O 16. 4 Si. O 2 13. 8 Mg. O 13. 6 Fe. O 4. 3 Mn. O 0. 9 V 2 O 5 0. 2 Criteria of the ideal electrolyte q Minimum melting temperature q Wide electrochemical window of operation q Minimum viscosity q Minimum electronic conductivity q Maximum ionic conductivity q Minimum corrosiveness q Capable of dissolving Ti. O 2 Slag composition by XRF (*reported as oxides) 7

TECHNICAL CHALLENGES AT 1800 K x Low melting temperature Component* wt. % Ti. O

TECHNICAL CHALLENGES AT 1800 K x Low melting temperature Component* wt. % Ti. O 2 32. 5 Al 2 O 3 18. 5 Ca. O 16. 4 Si. O 2 13. 8 Mg. O 13. 6 Fe. O 4. 3 Mn. O 0. 9 V 2 O 5 0. 2 TLiq= 1473 - 2173 K [3] Negligible mass change exo. [3] I. P. Ratchev and G. R. Belton (1997). 5 th International Conference on Molten Slags, Fluxes and Salts, Sydney, Australia. 8

TECHNICAL CHALLENGES AT 1800 K x Wide electrochemical window of operation Component* wt. %

TECHNICAL CHALLENGES AT 1800 K x Wide electrochemical window of operation Component* wt. % Ti. O 2 32. 5 Al 2 O 3 18. 5 Ca. O 16. 4 Si. O 2 13. 8 Mg. O 13. 6 Fe. O 4. 3 Mn. O 0. 9 V 2 O 5 0. 2 Most favorable reduction [4] D. R. Gaskell (1981). Introduction to metallurgical thermodynamics (2 nd ed. ). Hemisphere Pub. Corp. ; New York : Mc. Graw-Hill, Washington. 9

TECHNICAL CHALLENGES AT 1800 K x Minimum viscosity Component* wt. % Ti. O 2

TECHNICAL CHALLENGES AT 1800 K x Minimum viscosity Component* wt. % Ti. O 2 32. 5 Al 2 O 3 18. 5 Ca. O 16. 4 Si. O 2 13. 8 Mg. O 13. 6 Fe. O 4. 3 Mn. O 0. 9 V 2 O 5 0. 2 Graphite crucible 1773 K 10

TECHNICAL CHALLENGES AT 1800 K x Minimum corrosiveness Component* wt. % Ti. O 2

TECHNICAL CHALLENGES AT 1800 K x Minimum corrosiveness Component* wt. % Ti. O 2 32. 5 Al 2 O 3 18. 5 Ca. O 16. 4 Si. O 2 13. 8 Mg. O 13. 6 Fe. O 4. 3 Mn. O 0. 9 V 2 O 5 0. 2 – Ceramic soluble in molten oxide electrolyte – Metal soluble in liquid metal product Single-use crucible + secondary container 11

TECHNICAL CHALLENGES AT 1800 K x Minimum electronic conductivity Component* wt. % Ti. O

TECHNICAL CHALLENGES AT 1800 K x Minimum electronic conductivity Component* wt. % Ti. O 2 32. 5 Al 2 O 3 18. 5 Ca. O 16. 4 Si. O 2 13. 8 Mg. O 13. 6 Fe. O 4. 3 Mn. O 0. 9 V 2 O 5 0. 2 – Max. potentiostat current reached before desired voltage Fe. O greatly raises conductivity [5] A. Ducret, D. Khetpal, and D. R. Sadoway (2002). Proceedings Electrochemical Society, 19(Molten Salts XIII), 347. 12

ATTEMPTS TO DATE Issues Fragility of the system Slag electrically conductive Data corruption due

ATTEMPTS TO DATE Issues Fragility of the system Slag electrically conductive Data corruption due to - Furnace tube failure - Crucible failure: CTE mismatch upon cooling Iron droplets 1823 K Graphite crucible 13

PATH FORWARD Issues Fragility of the system Modelling Slag electrically conductive Varying slag composition

PATH FORWARD Issues Fragility of the system Modelling Slag electrically conductive Varying slag composition - Thermo. Calc predictions on activity of oxides - Study the physical properties of the slag at different stages of electrolysis - Verification using Simultaneous Thermal Analysis - Study the role of the minor components 14

ACKNOWLEDGMENTS THANK YOU FOR YOUR ATTENTION! 15

ACKNOWLEDGMENTS THANK YOU FOR YOUR ATTENTION! 15