Processi e Thread Processi e thread in Unix

  • Slides: 46
Download presentation
Processi e Thread Processi e thread in Unix 1

Processi e Thread Processi e thread in Unix 1

UNIX/Linux • Molte versioni di UNIX – trattiamo le caratteristiche più comuni) • Ci

UNIX/Linux • Molte versioni di UNIX – trattiamo le caratteristiche più comuni) • Ci riferiamo allo standard POSIX – Portable Operating System + I X – Insieme di SC che devono essere supportate dai sistemi conformi (IEEE 1003. 1) • Trattiamo a parte le caratteristiche di Linux che si discostano maggiormente 2

UNIX: struttura generale Utenti Interfaccia delle chiamate di sistema Programmi di utilità standard (shell,

UNIX: struttura generale Utenti Interfaccia delle chiamate di sistema Programmi di utilità standard (shell, editori, compilatori etc. ) Interfaccia di libreria Modo utente Libreria standard (Open, close, read, write …) Sistema operativo Unix (gestione processi, memoria, file system, I/0. . ) Hardware Modo kernel 3

Processi in UNIX • Adottano il modello a processi sequenziali • Ogni processo nasce

Processi in UNIX • Adottano il modello a processi sequenziali • Ogni processo nasce con un solo thread • Descriveremo alcune tipiche SC legate alla gestione dei processi e all’IPC e poi parleremo della loro implementazione 4

Creazione e terminazione di processi • Analizziamo le seguenti SC : – fork :

Creazione e terminazione di processi • Analizziamo le seguenti SC : – fork : crea un nuovo processo (figlio/child), copia esatta del processo invocante (padre/parent) – waitpid : permette al padre di attendere la terminazione di un figlio – exec : permette di specializzare un processo con un eseguibile – exit : termina il processo che la esegue 5

Creazione di Processi • Avviene in due passi fork() + execve() • x =

Creazione di Processi • Avviene in due passi fork() + execve() • x = fork() – crea una copia esatta del processo invocante • testo, dati, stack, descrittore dei file aperti – viene generato un un nuovo pid (PID) per il processo figlio – se ha successo, restituisce x=0 nel processo figlio ed x uguale al PID del figlio nel processo padre – se fallisce, restituisce x=-1 • es. la tabella dei processi non ha più spazio. . . 6

Creazione di processi (2) • Spazio di indirizzamento di padre e figlio dopo una

Creazione di processi (2) • Spazio di indirizzamento di padre e figlio dopo una fork terminata con successo copia 232 - 1 0 Stack 232 - 1 Stack Area vuota heap Data Text SI padre 0 SI figlio 7

Creazione di processi (2. 1) • Come prosegue l’esecuzione nei processi padre e figlio

Creazione di processi (2. 1) • Come prosegue l’esecuzione nei processi padre e figlio 232 - 1 &x 45 232 - 1 Stack &x Area vuota heap Data 0 0 Stack Area vuota PC = istruzione successiva a fork Text SI padre (pid=34) 0 heap Data Text SI figlio (pid = 45) 8

Creazione di Processi (3) • s = execve(pathexe, argv, envp) – differenzia un processo

Creazione di Processi (3) • s = execve(pathexe, argv, envp) – differenzia un processo rimpiazzando il suo spazio di indirizzamento con quello dell’eseguibile passato come parametro (pathexe) • char * argv[] è un array di stringhe (quelle passate sulla linea di comando quando abbiamo invocato làeseguibile) • char * envp[] è un array di stringhe del tipo nome = valore • se execve ha successo non ritorna!!!!! • s : stato in caso di fallimento (non trova il file eseguibile, il file pathexe non è un eseguibile etc…) 9

Creazione di processi (4) • Formato di un file eseguibile – risultato di compilazione,

Creazione di processi (4) • Formato di un file eseguibile – risultato di compilazione, linking etc. . . Numero che contraddistingue il file come eseguibile Magic number Altre info Ampiezza area di memoria occupata dalle variabili globali NON inizializzate Ampiezza BSS Variabili globali I-Data segment inizializzate Text segment Codice del programma (assemblato) 10

Creazione di processi (5) – La execve() : (1) usa il contenuto del file

Creazione di processi (5) – La execve() : (1) usa il contenuto del file eseguibile per sovrascrivere lo spazio di indirizzamento del processo che la invoca Variabili di ambiente (envp) Agomenti (argv) FRAME per la funzione main env argv Stack Area vuota BSS-segment Ampiezza BSS I-Data segment Text pathexe 232 - 1 Data 0 11

Creazione di processi (6) – La execve() : (2) carica in PC l’indirizzo iniziale

Creazione di processi (6) – La execve() : (2) carica in PC l’indirizzo iniziale X • non può più ritornare …. env argv Stack Area vuota Indirizzo della prima istruzione compilata di main() X Ampiezza BSS I-Data segment Text segment pathexe 232 - 1 BSS-segment I-Data segment X Text 0 12

Terminazione di processi (1) • pid=waitpid(pid, &status, opt) – attende la terminazione di un

Terminazione di processi (1) • pid=waitpid(pid, &status, opt) – attende la terminazione di un processo figlio (pid) – dopo l’esecuzione di waitpid, status contiene l’esito della computazione del processo figlio – status = 0 terminazione normale, != 0 terminazione in presenza di errore • exit(status) – termina il processo e restituisce il valore di status al padre (nella variabile status restituita da waitpid) 13

Terminazione di processi (2) • Processi zombie – processi terminati il cui padre non

Terminazione di processi (2) • Processi zombie – processi terminati il cui padre non ha (ancora) eseguito la waitpid() – attendono di restituire il codice di terminazione e svanire 14

Una shell semplificata int pid, status; while (TRUE) { /*ciclo infinito*/ type_prompt(); /* stampa

Una shell semplificata int pid, status; while (TRUE) { /*ciclo infinito*/ type_prompt(); /* stampa prompt*/ read_comm(com, par); /* legge command line */ pid = fork(); /*duplicazione*/ if (pid < 0) { printf(“Unable to fork”); continue; } if (pid != 0) waitpid(-1, &status, 0); /* codice padre */ else execve(com, par, 0); /*codice figlio*/ } 15

Stati dei processi in UNIX Idle Fork iniziata Fork terminata Runnable L’evento accade scheduling

Stati dei processi in UNIX Idle Fork iniziata Fork terminata Runnable L’evento accade scheduling Sleeping Running Attesa di un evento exit waitpid Zombified 16

Meccanismi IPC di Unix (1) • I sistemi Unix forniscono vari meccanismi di IPC

Meccanismi IPC di Unix (1) • I sistemi Unix forniscono vari meccanismi di IPC • Sono comuni a tutti : – pipe – segnali (signals) • Altri meccanismi forniti – semafori – scambio messaggi (con varie caratteristiche) – regioni di memoria condivisa (shmem) 17

Pipe • Pipe : file speciali utilizzati per connettere due processi con un canale

Pipe • Pipe : file speciali utilizzati per connettere due processi con un canale unidirezionale di comunicazione A pipe B • Se B cerca di leggere da una pipe vuota si blocca • Quando la pipe è piena A viene automaticamente sospeso • L’ampiezza della pipe dipende dal sistema 18

Segnali • Sono ‘interruzioni’ software – comunicano al processo il verificarsi di una certo

Segnali • Sono ‘interruzioni’ software – comunicano al processo il verificarsi di una certo evento – possono essere inviati solo antenati, discendenti (gruppo) – generalmente possono essere ignorati, catturati o possono terminare il processo (default per molti segnali) – per i segnali catturabili si può specificare un signal handler che viene mandato in esecuzione appena il segnale viene rilevato 19

Segnali (2) • Ogni segnale corrisponde a un certo tipo di evento • Lo

Segnali (2) • Ogni segnale corrisponde a un certo tipo di evento • Lo standard POSIX stabilisce un insieme di segnali riconosciuti in tutti i sistemi conformi • es : – SIGFPE : si è verificata una eccezione floating point (es. ho diviso per 0) – SIGKILL : il processo viene terinato (non può essere intercettata) – SIGALRM : è passato il tempo richiesto 20

Alcuni segnali previsti da POSIX The signals required by POSIX. 21

Alcuni segnali previsti da POSIX The signals required by POSIX. 21

Segnali (3) • I segnali possono essere inviati – da un processo all’altro –

Segnali (3) • I segnali possono essere inviati – da un processo all’altro – dall’utente con particolari combinazioni di tasti (al processo in foregroud) • Control-C corrisponde a SIGINT • Control-Z corresponde a SIGSTOP – dal SO per a comunicare al processo il verificarsi di particolari eventi (es. SIGFPE, errore floating-point) 22

Segnali (4) • SD del kernel relative ai segnali – signal handler array :

Segnali (4) • SD del kernel relative ai segnali – signal handler array : descrive cosa fare quando arriva un segnale di un certo tipo • ignorare, trattare + indirizzo del codice della funzione da eseguire (handler) – pending signal bitmap (signal mask): che contiene un bit per ogni tipo di segnale • il bit X è a 1 se c’è un segnale pendente di tipo X – ogni processo ha signal handler array ed una pending signal bitmap 23

Segnali (5) • Come si fissa l’azione da compiere quando viene rilevato un segnale?

Segnali (5) • Come si fissa l’azione da compiere quando viene rilevato un segnale? – Ci sono azioni predefinite – s = sigaction(signum, &act, &oldact) • signum : segnale da trattare • &act : struttura che definisce che cosa fare quando arriva un segnale, in particolare contiene il puntatore ad un funzione di tipo void -> int, che verra invocata all’arrivo di un segnale di tipo signum. &act viene copiata nel signal handler array • &oldact : ritorna il contenuto precedente del signal handler array (può servire per ritornare al comportamento precedente) 24

Segnali (6) • Come ci si accorge della presenza di un segnale ? –

Segnali (6) • Come ci si accorge della presenza di un segnale ? – Quando un segnale viene inviato il kernel mette a 1 il corrispondente bit nella signal bitmap • più segnali sello stesso tipo in rapida sequenza possono essere visti come uno solo – Il kernel controlla la signal bitmap ogni volta che ritorna da stato kernel a stato utente • es al ritorno da una SC, o dalla gestione di una interruzione – Lo stato sleeping è lo stato nel quale un processo attende l’arrivo di un segnale • Appena ne arriva uno, viene risvegliato 25

Segnali (7) • Cosa accade quando il kernel trova un segnale pendente – Esegue

Segnali (7) • Cosa accade quando il kernel trova un segnale pendente – Esegue l’azione richiesta • ignora, default o esegue sh definito dall’utente – Se deve essere invocato un signal handler definito dall’utente: • Il kernel modifica la user stack inserendo un frame per il signal handler e lo manda in esecuzione • Quando il signal handler è terminato si riprende l’esecuzione interrotta con il frame corretto 26

Segnali (8) • Come si invia un segnale – s = kill(pid, sig) –

Segnali (8) • Come si invia un segnale – s = kill(pid, sig) – invia un segnale di tipo sig al processo pid (se ammesso) – setta a 1 il corrispondente bit della signal bitmap 27

Segnali (9) • Altre SC relative ai segnali – s = pause() • sospende

Segnali (9) • Altre SC relative ai segnali – s = pause() • sospende il processo fino al prossimo segnale – s = sigprocmask(how, &set, &oldset) • permette di mascherare alcuni segnali – resid=alarm(sec) • dopo secondi invia una SIGALRM al processo • resid tempo rimanente dal precedente settaggio di alarm 28

Stati dei processi in UNIX (2) Fork terminata Idle Runnable Fork iniziata L’evento accade

Stati dei processi in UNIX (2) Fork terminata Idle Runnable Fork iniziata L’evento accade scheduling Sleeping Running Segnale SIGSTOP (CTRL Z) Segnale SIGCONT Attesa di un evento exit Stopped waitpid Zombified 29

Implementazione di processi (1) • Contesto (context) di un processo – tutte le informazioni

Implementazione di processi (1) • Contesto (context) di un processo – tutte le informazioni necessarie per descrivere lo stato di avanzamento di un processo ad un certo istante • Cosa compone il contesto di un processo P 1. Spazio di indirizzamento utente: testo, dati, stack, aree condivise (es. mmap) 2. Kernel stack : stack utilizzato durante le chiamate di sistema relative a P 3. Variabili di ambiente 4. process table e user structure (u area) 30

Implementazione di processi (2) • Variabili di ambiente : – è un insieme di

Implementazione di processi (2) • Variabili di ambiente : – è un insieme di stringhe della forma variabile = valore – vengono ereditate dal padre, ci sono primitive per leggerne il valore, modificarle etc … – tipicamente sono memorizzate nella parte bassa dello stack utente prima dell’attivazione del processo 31

Implementazione di processi (3) • Process table : risiede sempre in RAM – un

Implementazione di processi (3) • Process table : risiede sempre in RAM – un elemento per ogni processo attivo • Cosa contiene un elemento : – parametri per lo scheduling (priorità) – informazioni sull’area/e di memoria che contiene testo, dati, stack e user area – informazioni sui segnali pendenti (signal bitmap) – stato – PID, PID del padre – user e group id (reali ed effettivi) 32

Implementazione di processi (4) • User structure/area : risiede su disco se il processo

Implementazione di processi (4) • User structure/area : risiede su disco se il processo è swapped out – registri hw – tabella dei descrittori di file – stato della system call corrente – kernel stack – informazioni di accounting • tempo CPU usato recentemente, etc. – signal handler array 33

Il comando ls Passi effettuati durante l’esecuzione del comando ls da 34 parte della

Il comando ls Passi effettuati durante l’esecuzione del comando ls da 34 parte della shell

Le principali funzioni relative ai Thread POSIX • Alcune funzioni POSIX P 1003. 1

Le principali funzioni relative ai Thread POSIX • Alcune funzioni POSIX P 1003. 1 c • Possono essere implementate a livello user o kernel 35

Es. la creazione di un thread. . . err = pthread_create(&tid, attr, function, arg)

Es. la creazione di un thread. . . err = pthread_create(&tid, attr, function, arg) – nella variabile tid si restituisce l’identificatore del nuovo thread – il nuovo thread inizia l’esecuzione a partire da function con argomenti arg – attr segnala gli attributi del nuovo thread (es la priorità) 36

Implementazione di thread (1) • Può essere user-level o kernel-level • Problema : come

Implementazione di thread (1) • Può essere user-level o kernel-level • Problema : come mantenere la semantica tradizionale di UNIX? – fork : tutti i (kernel) thread del padre devono essere creati nel figlio? – I/O : cosa accade se due thread agiscono sullo stesso file in modo incontrollato? – segnali : devono essere diretti a un thread in particolare o a tutto il processo? 37

Implementazione di thread (2) • I thread di Linux – kernel level – SC

Implementazione di thread (2) • I thread di Linux – kernel level – SC per l’attivazione di un nuovo thread : pid=clone(function, stack_ptr, sharing_flags, arg) – function : funzione da cui iniziare l’esecuzione – stack_ptr : puntatore alla pila privata del thread – arg : argomenti con cui viene attivata function – sharing_flags : bitmap di condivisione fra thread padre e thread figlio 38

I flag per la clone() • Significato dei bit nella bitmap sharing_flags 39

I flag per la clone() • Significato dei bit nella bitmap sharing_flags 39

Scheduling in UNIX Scheduling a due livelli : • scheduler a basso livello (low-level):

Scheduling in UNIX Scheduling a due livelli : • scheduler a basso livello (low-level): sceglie il prossimo processo da mandare in esecuzione fra quelli in RAM • scheduler ad alto livello (high-level): sposta i processi fra RAM e disco in modo da dare a tutti la possibilità di ottenere l’accesso alla CPU Nel seguito descriveremo lo scheduler a basso livello 40

Lo scheduler di UNIX (1) Lo scheduling a basso livello è basato su una

Lo scheduler di UNIX (1) Lo scheduling a basso livello è basato su una coda a più livelli di priorità 41

Lo scheduler di UNIX (2) • Si esegue il primo processo della prima coda

Lo scheduler di UNIX (2) • Si esegue il primo processo della prima coda non vuota per massimo 1 quanto (tipicamente 100 ms) • Scheduling round robin fra processi con la stessa priorità • Una volta al secondo tutte le priorità vengono ricalcolate: priorità = cpu _usage + nice + base cpu _usage : numero di clock tick per secondo che il processo ha avuto negli ultimi secondi nice : valore intero nell’intervallo [-20, +20] base : valore intero che dipende da cosa sta facendo il processo • ha il valore della priorità precedente se il processo sta eseguendo elaborazione normale in user mode • ha un valore negativo molto basso se sta effettuando I/O da disco o da terminale 42

Lo scheduler di UNIX (3) Meccanismo di aging (invecchiamento o decadimento) usato per il

Lo scheduler di UNIX (3) Meccanismo di aging (invecchiamento o decadimento) usato per il calcolo di cpu _usage : • Fissiamo un intervallo di decadimento t • I tick ricevuti mentre il processo P è in esecuzione vengono accumulati in una variabile temporanea tick • Ogni t cpu _usage = cpu _usage / 2 + tick; tick = 0; • Il peso dei tick utilizzati descresce col tempo • La penalizzazione dei processi che hanno utilizzato molta CPU diminuisce nel tempo 43

Lo scheduler di Linux (1) • Vengono schedulati i thread, non i processi •

Lo scheduler di Linux (1) • Vengono schedulati i thread, non i processi • Tre classi di thread : real-time FIFO, real-time Round Robin, Timesharing • Ogni thread ha – una priorità nell’intervallo [0, +40], generalmente all’inizio la priorità di default è 20 – un quanto (misurato in jiffy = 10 ms, sono i tick del clock) • Lo scheduler calcola la goodness (gdn, lett. bontà) di ogni thread pronto come if (class == real-time) gdn = 1000 + priority if (class == timeshar && quantum > 0) gdn = quantum + priority if (class == timeshar && quantum == 0) gdn = 0 44

Lo scheduler di Linux (2) Algoritmo di scheduling : • Ogni volta viene selezionato

Lo scheduler di Linux (2) Algoritmo di scheduling : • Ogni volta viene selezionato il thread con goodness maggiore • Ogni volta che arriva un tick il quanto del thread in esecuzione viene decrementato • Un thread viene de-schedulato se si verifica una delle seguenti condizioni – il quanto diventa 0 – il thread si blocca – diventa ready un thread con una goodness maggiore 45

Lo scheduler di Linux (3) Algoritmo di scheduling (contd. ): • Quando tutti i

Lo scheduler di Linux (3) Algoritmo di scheduling (contd. ): • Quando tutti i quanti dei thready sono andati a 0 , lo scheduler ricalcola il quanto di ogni thread (anche se blocked) come segue : quantum = quantum / 2 + priority 46