Principle Maya ACTAR TPC Design Tests MM Electronics

  • Slides: 57
Download presentation
Principle Maya ACTAR TPC Design Tests MM Electronics Active Targets: From Maya to ACTAR

Principle Maya ACTAR TPC Design Tests MM Electronics Active Targets: From Maya to ACTAR TPC Riccardo Raabe Instituut voor Kern- en Stralingsfysica K. U. Leuven 6 th DITANET Topical Workshop on Particle Detection Techniques Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Outline The active target Motivation and

Principle Maya ACTAR TPC Design Tests MM Electronics Outline The active target Motivation and principle Present devices Configurations: physics cases, dynamic ranges Requirements for the new instruments Goals and design Tests with bulk micromegas Electronics Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Motivation: reactions with the most exotic

Principle Maya ACTAR TPC Design Tests MM Electronics Motivation: reactions with the most exotic beams Opportunities at the present and future RIBs facilities: SPIRAL 2, FAIR, HIE-ISOLDE, RIKEN, FRIB, ISAC 2. . . Use direct and resonant reactions as spectroscopic tool to study the evolution of nuclear structure far from stability Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Instruments “Usually” (RIBs): Target is a

Principle Maya ACTAR TPC Design Tests MM Electronics Instruments “Usually” (RIBs): Target is a foil Solid-state detection arrays Good resolution only if gamma-ray detection low luminosity Most exotic (weakest) beams? Maximize target thickness detection efficiency Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics The active target concept Time-Projection Chamber

Principle Maya ACTAR TPC Design Tests MM Electronics The active target concept Time-Projection Chamber (TPC)… Electrons produced by ionization drift to an amplification zone Signals collected on a segmented “pad” plane 2 d-image of the track 3 rd dimension from the drift time of the electrons …+ the detection gas is the target Large target thickness and still good resolution Good efficiency, low detection threshold Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Present devices: IKAR and CENBG TPC

Principle Maya ACTAR TPC Design Tests MM Electronics Present devices: IKAR and CENBG TPC IKAR NPA 712 (2002) 247 Hydrogen gas, 10 bar Multiple ionization chambers High energy beam Elastic scattering of halo nuclei Beam from FRS p CENBG TPC NIMB 266 (2008) 4606 Mixture 90% Ar + 10% CH 4, ≈1 bar Amplification: GEM Pad plane: micro-groove detector (orthogonal strips) 2 p-emission decay studies Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Present devices: Maya NIMA 573 (2007)

Principle Maya ACTAR TPC Design Tests MM Electronics Present devices: Maya NIMA 573 (2007) 145 Various gases: C 4 H 10, D 2, 4 He+2%CF 4, from 30 mbar to 1 bar Amplification: wires and induction Pad plane: hexagons Additional detectors for particles escaping the gas volume Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Maya results: identification of 7 H

Principle Maya ACTAR TPC Design Tests MM Electronics Maya results: identification of 7 H M. Caamaño et al. , PRL 99 (2007) 062502 8 He(12 C, 13 N)7 H → 3 H+4 n 15. 4 Me. V/nucleon (SPIRAL) 13 N (10 Me. V) stopped in 1. 3 mg/cm 2 carbon active target Identification of channel: kinematic reconstruction 3 H in Cs. I detectors 13 N in gas volume identification (separate from 12 C…) [“easy” because it is the highest Z] Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Maya results: 11 Li(p, t)9 Li

Principle Maya ACTAR TPC Design Tests MM Electronics Maya results: 11 Li(p, t)9 Li transfer reaction mg/cm 2) C 4 H 10 150 mbar (1. 7 Both particles identified I. Tanihata et al. , PRL 101 (2008) 192502 tritons 9 Li Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Maya results: 11 Li(p, t)9 Li

Principle Maya ACTAR TPC Design Tests MM Electronics Maya results: 11 Li(p, t)9 Li transfer reaction mg/cm 2) C 4 H 10 150 mbar (1. 7 Both particles identified I. Tanihata et al. , PRL 101 (2008) 192502 Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Maya results: 11 Li(p, t)9 Li

Principle Maya ACTAR TPC Design Tests MM Electronics Maya results: 11 Li(p, t)9 Li transfer reaction mg/cm 2) C 4 H 10 150 mbar (1. 7 Both particles identified Measure angles kinematic reconstruction I. Tanihata et al. , PRL 101 (2008) 192502 Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Maya results: mass of 11 Li

Principle Maya ACTAR TPC Design Tests MM Electronics Maya results: mass of 11 Li T. Roger et al. , PRC 79 (2009) 031603(R) C 4 H 10 350 mbar 9 Li stopped in the detector, 3 H in Si at 0 degrees Measure path length Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Maya results: mass of 11 Li

Principle Maya ACTAR TPC Design Tests MM Electronics Maya results: mass of 11 Li T. Roger et al. , PRC 79 (2009) 031603(R) C 4 H 10 350 mbar 9 Li stopped in the detector, 3 H in Si at 0 degrees Measure path length Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Maya results: Giant Monopole Resonance in

Principle Maya ACTAR TPC Design Tests MM Electronics Maya results: Giant Monopole Resonance in 56 Ni Deuterium 1 bar Shield on beam path! Measure energy and angle of scattered d (at least 10 pads) 56 Ni 50 Me. V/u C. Monrozeau et al. , PRL 100 (2008) 042501 d Diamond Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Requirements with the new physics cases

Principle Maya ACTAR TPC Design Tests MM Electronics Requirements with the new physics cases Various physics cases require different configurations “adaptable” instrument Different facilities: transportable Robust (reproducible results, “stable” operation) Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Requirements with the new physics cases

Principle Maya ACTAR TPC Design Tests MM Electronics Requirements with the new physics cases Detect particles with (very) different charges: dynamic range 103 Increase spatial efficiency detect multiple tracks Improve (keep) energy and position resolution Improve acceptable beam intensity and counting rates Work upon… Increase gain Detector hardware Electronics Data acquisition software Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Configurations ACTAR TPC AIP Conf. Proc.

Principle Maya ACTAR TPC Design Tests MM Electronics Configurations ACTAR TPC AIP Conf. Proc. 1165 (2009) 339 Cubic geometry (mainly) Amplification: Micromegas, GEM Ancillary detectors Independent pads, 2 x 2 mm 2 ≈250 mm E AT-TPC, TACTIC Cylindrical geometry Magnetic field to confine particles Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Advantages Micro-Pattern Gaseous Detectors Uniformity, robustness

Principle Maya ACTAR TPC Design Tests MM Electronics Advantages Micro-Pattern Gaseous Detectors Uniformity, robustness Energy resolution? Flexibility vary amplification gap combine MM and GEMs… Independent pads Vary voltage on different areas Multiple tracks Resonant reactions Interaction point Recoil E and angle Resonan ce region Reco il proto n Bea m Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Advantages Micro-Pattern Gaseous Detectors Uniformity, robustness

Principle Maya ACTAR TPC Design Tests MM Electronics Advantages Micro-Pattern Gaseous Detectors Uniformity, robustness Energy resolution? Flexibility vary amplification gap combine MM and GEMs… Inelastic scattering Interaction point Beam counting Different configurations Independent pads Vary voltage on different areas Multiple tracks Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Beam Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Advantages Micro-Pattern Gaseous Detectors Uniformity, robustness

Principle Maya ACTAR TPC Design Tests MM Electronics Advantages Micro-Pattern Gaseous Detectors Uniformity, robustness Energy resolution? Flexibility vary amplification gap combine MM and GEMs… Independent pads Vary voltage on different areas Multiple tracks Transfer reactions Interaction point Recoil light particle energy and angle Solid-state telescopes Beam Light recoils Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Prototype tests (bulk micromegas) Angular resolution

Principle Maya ACTAR TPC Design Tests MM Electronics Prototype tests (bulk micromegas) Angular resolution He+CF 4 (2%) Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Prototype tests (bulk micromegas) Angular resolution

Principle Maya ACTAR TPC Design Tests MM Electronics Prototype tests (bulk micromegas) Angular resolution He+CF 4 (2%) Resolution <1. 3° FWHM Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Prototype tests (bulk micromegas) Angular resolution

Principle Maya ACTAR TPC Design Tests MM Electronics Prototype tests (bulk micromegas) Angular resolution He+CF 4 (2%) Resolution < 1. 3° FWHM Acceptable for very short tracks too Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Prototype tests (bulk micromegas) Energy resolution

Principle Maya ACTAR TPC Design Tests MM Electronics Prototype tests (bulk micromegas) Energy resolution α particles in Ar+CF 4(2%) 1100 mbar Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Prototype tests (bulk micromegas) Energy resolution

Principle Maya ACTAR TPC Design Tests MM Electronics Prototype tests (bulk micromegas) Energy resolution α particles in Ar+CF 4(2%) 1100 mbar Path length: > 0. 8 mm Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Prototype tests (bulk micromegas) Energy resolution

Principle Maya ACTAR TPC Design Tests MM Electronics Prototype tests (bulk micromegas) Energy resolution α particles in Ar+CF 4(2%) 1100 mbar Path length: > 80 ke. V FWHM Charge: > 80 ke. V Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics General Electronics for TPCs – GET

Principle Maya ACTAR TPC Design Tests MM Electronics General Electronics for TPCs – GET High front-end density High-rate throughput (selective readout, zero suppression) High S/N ratio High dynamic range Manage time stamp, other detectors, control. . . Intelligent trigger L 0 external L 1 multiplicity L 2 topology Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics GET: The AGET chip Based on

Principle Maya ACTAR TPC Design Tests MM Electronics GET: The AGET chip Based on the AFTER asic Amplification, detection and storage x 64: CSA, shaper, discriminator, memory (sampling from 1 MHz to 100 MHz) Highly configurable Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Dynamic range Possibilities TACTIC Electronics (better

Principle Maya ACTAR TPC Design Tests MM Electronics Dynamic range Possibilities TACTIC Electronics (better preamps) Software (different gains on pads) Hardware: mask the beam Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Tests MM Electronics Summary Active targets are very promising

Principle Maya ACTAR TPC Design Tests MM Electronics Summary Active targets are very promising instruments for research with exotic beams Large target thickness with no loss in resolution Low thresholds Versatile, different configurations possible Many parameters to consider gas, pressure, electric field, drift velocity, dynamic range The new generation: ACTAR TPC Improvements in dynamic range, track multiplicity, event rate… Configuration, amplification technology Electronics and software Tests and simulation work Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Principle Maya ACTAR TPC Design Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.

Principle Maya ACTAR TPC Design Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Tests MM Electronics Sevilla – 7 & 8/11/2011

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla –

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla –

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla –

Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Detection Configurations (physics cases) Resonant reactions Energy of the beam

Exotic nuclei Active targets Detection Configurations (physics cases) Resonant reactions Energy of the beam to reach the resonance of interest Pressure adjusted to stop the beam at the end of the gas volume Detection of light recoils scattered forward Measure: interaction point identification recoil E, angle recoil particle Resolution of interaction point Dynamic range Resonan ce region Reco il proto n Bea m Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Detection Configurations (physics cases) Elastic and inelastic scattering High pressure

Exotic nuclei Active targets Detection Configurations (physics cases) Elastic and inelastic scattering High pressure for target thickness and stopping of light recoil particles Beam leaves the detection volume Measure E and angle of light recoils If projectile heavy dynamic range has to be large Beam Energy (position) resolution Low thresholds, dynamic range Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Detection Configurations (physics cases) Transfer reactions (p, d), (d, p),

Exotic nuclei Active targets Detection Configurations (physics cases) Transfer reactions (p, d), (d, p), (4 He, t), (3 He, d), (p, t)… Beam leaves the detection volume Light recoil at all angles and energies! Pressure adjusted for the products of interest Identification light recoil Measure E, angle of light recoil (d, p): low energy protons at backward angles Population of unstable systems: multiple tracks Solid-state telescopes Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Beam Light recoils Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Detection Measurements with exotic nuclei Fragmented and post-accelerated RIBs reaction

Exotic nuclei Active targets Detection Measurements with exotic nuclei Fragmented and post-accelerated RIBs reaction methods now available on exotic nuclei Elastic and inelastic scattering Resonant reactions Direct reactions Close to driplines: Exotic decays with ion emission Charged-particle detection methods are central Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Detection Requirements on detection methods Low-intensity beams efficiency is key

Exotic nuclei Active targets Detection Requirements on detection methods Low-intensity beams efficiency is key Identification of channel particle ID Resolution Reactions: inverse kinematics Heavy beam on a light target beam-like magnetic spectrometer light recoil charge-particle array Reconstruct kinematics from E and θ of emitted particles (two quantities are sufficient to identify the channnel) Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Detection Reactions: kinematics Example: transfer reactions “Universal” kinematic curves placement

Exotic nuclei Active targets Detection Reactions: kinematics Example: transfer reactions “Universal” kinematic curves placement of detector depends on channel to be detected (Q-value) Kinematic compression resolution, low thresholds Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Detection Configurations Resolution in E* Light beam: better detect beam-like

Exotic nuclei Active targets Detection Configurations Resolution in E* Light beam: better detect beam-like particle (limit on angular resolution) Heavier beam: better detect light recoil (limit on E resolution from straggling in the target) In general: much worse than direct kinematics Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Detection Instruments Charged particle arrays: solid-state telescopes (Si, Si+Cs. I.

Exotic nuclei Active targets Detection Instruments Charged particle arrays: solid-state telescopes (Si, Si+Cs. I. . . ) resolution vs. cost How to improve resolution -ray: very good resolution but low efficiency, no g. s. -to-g. s. T-REX Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Detection Present and future devices ACTAR AIP Conf. Proc. 1165

Exotic nuclei Active targets Detection Present and future devices ACTAR AIP Conf. Proc. 1165 (2009) 339 Cubic geometry (mainly) Amplification: Micromegas E and T from pads (≈16000 channels) Larger dynamic range (Electronics, pad independence) Multiple tracks ≈250 mm AT-TPC, TACTIC Cylindrical geometry Magnetic field to confine particles Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Detection Detector parameters Gas and pressure mostly dictated by physics

Exotic nuclei Active targets Detection Detector parameters Gas and pressure mostly dictated by physics Electric field: optimize for Amplification Drift velocity of electrons Drift velocity: spatial resolution is δx = vdrift δt vdrift ≈ 5 to 100 μm/ns δt ≈ 200 to 10 ns NIM 159 (1979) 213 Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Detection Dynamic range External detectors are expensive contain particles in

Exotic nuclei Active targets Detection Dynamic range External detectors are expensive contain particles in gas volume Higher pressure stronger signal from light ions but Limit imposed by Eloss of beam particle 3 orders of magnitude difference! Possibilities Electronics (better preamps) Software (different gains on pads) Hardware: mask the beam Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Detection Measured quantities Energy Collected charge Path length (range) Angle

Exotic nuclei Active targets Detection Measured quantities Energy Collected charge Path length (range) Angle External detectors Track reconstruction Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Track reconstruction Charge distribution depends upon amplification technology and pad

Exotic nuclei Active targets Track reconstruction Charge distribution depends upon amplification technology and pad shape Detection T. Roger, Ph. D Thesis Wires GEM Micromegas Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Track reconstruction Detection T. Roger, Ph. D Thesis Simulation of

Exotic nuclei Active targets Track reconstruction Detection T. Roger, Ph. D Thesis Simulation of the charge collection to test reconstruction algorithms Hyperbolic Secant Squared 1. search for maxima along axes 2. find centroids 3. fit straght line through centroids Accuracy: 0 to 1 degrees depending on orientation Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Track reconstruction Detection T. Roger, Ph. D Thesis Global Fitting

Exotic nuclei Active targets Track reconstruction Detection T. Roger, Ph. D Thesis Global Fitting method For small charges, not spread (light particles, high energies) not ok for θ<10 deg Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Energy from collected charge Detection T. Roger, Ph. D Thesis

Exotic nuclei Active targets Energy from collected charge Detection T. Roger, Ph. D Thesis IKAR From pulse analysis: Integral recoil energy TR ( EFWHM 90 Ke. V) Risetime recoil angle R ( FWHM 0. 6°) Time difference anode-cathode vertex point ZV ( z. FWHM 110 m) Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Detection Energy from range: end point T. Roger, Ph. D

Exotic nuclei Active targets Detection Energy from range: end point T. Roger, Ph. D Thesis Charge profile Charge fit accuracy ≈1. 5 mm Bragg peak: threshold effects Threshold at 5% Threshold at 10% xend = (xlast + xlast– 1)/2 + Δ(slope) Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Energy from range: reaction vertex Detection T. Roger, Ph. D

Exotic nuclei Active targets Energy from range: reaction vertex Detection T. Roger, Ph. D Thesis Large uncertainties for short tracks and small angles Use charge profile instead Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Detection Particle identification Energy vs. range Curves and tables (ex.

Exotic nuclei Active targets Detection Particle identification Energy vs. range Curves and tables (ex. SRIM) Need accurate range and a good calibration of pads to extract the d. E/dx information Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Detection Calibrations Energy Induction: charge in wires with pulser Alignment

Exotic nuclei Active targets Detection Calibrations Energy Induction: charge in wires with pulser Alignment of pad gains Calibrated (alpha) source Time Calibrate electronics, or “Physics” calibration using a known reaction Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Detection Summary Active targets are very promising instruments for research

Exotic nuclei Active targets Detection Summary Active targets are very promising instruments for research with exotic beams Large target thickness with no loss in resolution Low thresholds Versatile, different configurations possible Many parameters to consider gas, pressure, electric field, drift velocity, dynamic range Measurements Track reconstruction: check algorithms against simulation Energy: from collected charge or from range (→ track reconstruction, energy loss tables) Particle ID from Eloss: limited by spatial resolution and d. E/dx on pads Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exercises Pressure to stop a beam (resonant) Which energy of beam in case of

Exercises Pressure to stop a beam (resonant) Which energy of beam in case of proton detection (resonant elastic) Which spatial resolution necessary to separate two kinds of particles. Given a kinematic plot, calculate acceptance and E resolution for various values of the pressure Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011

Exotic nuclei Active targets Detection Outline Exploring exotic nuclei Requirements Techniques The active target

Exotic nuclei Active targets Detection Outline Exploring exotic nuclei Requirements Techniques The active target Principle Present devices Configurations: physics cases, dynamic ranges Particle detection and identification Algorithms for track reconstruction Energy: charge and ranges Particle identification Calibrations Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K. U. Leuven, Belgium Sevilla – 7 & 8/11/2011