Polygon formulas Quad Distance Properties midpoint Polygon formulas































- Slides: 31
Polygon formulas Quad Distance/ Properties midpoint Polygon formulas Bisect/ Midpoint story problems Potporri (backwards) 100 100 100 200 200 200 300 300 300 400 400 400 500 500 500
Find the sum of the interior angles of an octagon 1080˚ Back
Find the measure of 1 interior angle of a regular pentagon 108 ˚ Back
Find the sum of the exterior angles of a dodecagon 360 ˚ Back
Find the measure of 1 exterior angle of a regular 20 -gon 18˚ Back
Find the sum of the interior angles of a septagon 900 ˚ Back
Which quadrilaterals have: (P = parallelogram, R = rectangle, Rh = rhombus, S = square, IT = isosceles trapezoid) Congruent diagonals R, S, IT Back
Which quadrilaterals have: (P = parallelogram, R = rectangle, Rh = rhombus, S = square, IT = isosceles trapezoid) 4 congruent sides Rh, S Back
Which quadrilaterals have: (P = parallelogram, R = rectangle, Rh = rhombus, S = square, IT = isosceles trapezoid) Opp angles congruent P, R, Rh, S Back
Which quadrilaterals have: (P = parallelogram, R = rectangle, Rh = rhombus, S = square, IT = isosceles trapezoid) Perpendicular diagonals Rh, S Back
Which quadrilaterals have: (P = parallelogram, R = rectangle, Rh = rhombus, S = square, IT = isosceles trapezoid) Diagonals that bisect angles Rh, S Back
Find the distance AND the midpoint: (3, 4) (-2, 5) D = 5. 10 M (½ , 4 ½) Back
Find the distance AND the midpoint: (7, 0) D = 10 M (3 , 3) Back (-1, 6)
Find the distance AND the midpoint: (-7, 5) (2, 8) D = 9. 49 M (-2 ½, 6 ½) Back
Find the distance AND the midpoint: (-12, 5) D = 9. 85 M (-7 ½, 7 ) Back (-3, 9)
Find the distance AND the midpoint: (0, 16) D = 25 M (-3 ½, 4) Back (-7, -8)
E = 40˚. Name the polygon. 360 40 =9 Regular nonagon Back
I = 150˚. Name the polygon 180 – 150 = 30 360 = 12 30 Regular Dodecagon Back
Si = 720˚. Name the polygon. 720 = 180(n – 2) 4=n– 2 6=n hexagon Back
I = 108˚. Name the polygon. 180 – 108 = 72 360 72 Regular pentagon =5 Back
Si = 1620˚. Name the polygon. 1620 = 180(n – 2) 9 =n– 2 11 = n 11 -gon Back
Ray BD bisects <ABC. m<ABD = 6 x m<CBD = 4 x + 14 Find m<ABC. 6 x = 4 x + 14 2 x = 14 x=7 <ABC = 2(6 x) = 12(7) 84 ˚ Back
O is the midpoint of HT. OH = 3 x + 1 TH = 7 x – 6 Find HT. 2(3 x + 1) = 7 x – 6 6 x + 2 = 7 x – 6 8=x HT = 7(8) – 6 50 Back
Ray OD bisects <COL <LOD = 2 x + 6 <COL = 6 x – 8 Find m <DOC. 2(2 x + 6) = 6 x – 8 <DOC = 2 x + 6 4 x + 12 = 6 x – 8 = 2(10) + 6 20 = 2 x 10 = x 26 ˚ Back
A is between C and T. CA = 2 x + 1 AT = 4 x – 1 Find CT 2 x + 1 = 4 x – 1 2 = 2 x 1=x CT = 2(2 x + 1) 12 Back
Ray ID bisects <BIR <BID = 5 x + 5 <RID = 3 x + 23 Find m <DIR 5 x + 5 = 3 x + 23 2 x = 18 x=9 <DIR = 3 x + 23 3(9) + 23 50 ˚ Back
Find the measure of 1 interior angle of a regular 25 -gon. 180(25 – 2) 25 165. 6 ˚ Back
Name all the quadrilaterals with: 4 right angles R, S Back
Find the distance between (-5, 9) and (0, -3) 13 Back
The measure of 1 exterior angle of a regular polygon is 45 ˚. Find the number of sides. 360 45 8 Back
E = 40˚ Name the polygon 360 40 Regular nonagon Back