Point processes Some special cases 1 a Homogeneous

  • Slides: 22
Download presentation
Point processes. Some special cases. 1. a). (Homogeneous) Poisson. Rate N(t), t in R

Point processes. Some special cases. 1. a). (Homogeneous) Poisson. Rate N(t), t in R Approaches.

Can use to check homogenious Poisson assumption Examples Brillinger, Bryant, Segundo Biological Cybernetics 22,

Can use to check homogenious Poisson assumption Examples Brillinger, Bryant, Segundo Biological Cybernetics 22, 213 -228 (1976)

Debris. Env. gif

Debris. Env. gif

1. b) Inhomogeneous Poisson.

1. b) Inhomogeneous Poisson.

Time substitution. N(t) Poisson rate (t)

Time substitution. N(t) Poisson rate (t)

Zero probability function. Characterizes simple N (I) = Pr{N(I; )=0}, for all bounded Baire

Zero probability function. Characterizes simple N (I) = Pr{N(I; )=0}, for all bounded Baire For Poisson, (t) (I) =exp{- (I)} capital M(I) = I (t)dt Risk analysis. Poisson events, rate , period T Prob{event in T} = 1 - exp{- |T|} |T|

2. Doubly stochastic (stationary) Poisson.

2. Doubly stochastic (stationary) Poisson.

3. Self-exciting process.

3. Self-exciting process.

4. Renewal process.

4. Renewal process.

Waiting time paradox. Homogeneous Poisson, Y's i. i. d. exponentials Forward recurrence time -

Waiting time paradox. Homogeneous Poisson, Y's i. i. d. exponentials Forward recurrence time - waiting time Backward recurrence time Time between events all exponential parameter

5. Cluster process.

5. Cluster process.

Operations on point processes. To produce other p. p. 's Superposition M(t) + N(t)

Operations on point processes. To produce other p. p. 's Superposition M(t) + N(t) Thinning i Ij (t- j), Ij=0 or 1 Time substitution N(t) = M(Q(t)) Q monotonic nondecreasing d. N(t) = d. M(Q(t))q(t)dt Random translation i ( j + uj)

Probability generating functional. G[ ] = E{ exp(log (t)) d. N(t)} For Poisson G[

Probability generating functional. G[ ] = E{ exp(log (t)) d. N(t)} For Poisson G[ ] = exp{ ( (t)-1) (t)dt}

Limiting cases. Poisson 1. Superpose p. p. 2. Rare events 3. Deletion

Limiting cases. Poisson 1. Superpose p. p. 2. Rare events 3. Deletion

Can make a p. p. into a t. s. Y(t) = a(t - j)

Can make a p. p. into a t. s. Y(t) = a(t - j) = a(t-u)d. N(u) for some suitable a(. ) - < t <

(Stationary) interval functions. Y(I), I an interval {Y(I 1+u), . . . , Y(IK+u)}

(Stationary) interval functions. Y(I), I an interval {Y(I 1+u), . . . , Y(IK+u)} ~ {Y(I 1), . . . , Y(IK)} Y(I) = I [(exp{it }-1)/i ]d. ZY( ) cov{d. ZY( ), d. ZY( )| = ( - )f. YY( )d d Cov(Y(I), Y(J)} = I J cov{d. Y(s), d. Y(t)} e. g. m. p. p.