Pixel Electronics slides for UCSC Cover 0 13

  • Slides: 16
Download presentation
Pixel Electronics slides for UCSC Cover 0. 13 FE chip ROD Other Activities (except

Pixel Electronics slides for UCSC Cover 0. 13 FE chip ROD Other Activities (except DC-DC) May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 1

Progress in FY 07 • • Epilogue from 2004 test chip Preamp chip submission

Progress in FY 07 • • Epilogue from 2004 test chip Preamp chip submission & testing Workshop at CERN Work-plan for full size chip submission – Includes non-US manpower • CPPM: • Bonn: • Genova: – US to focus on unique capabilities • Analog design • Architecture • Full chip integration May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 2

2004 test chip epilogue • CPPM has prepared an SEU measurement setup using the

2004 test chip epilogue • CPPM has prepared an SEU measurement setup using the LBNL 2004 0. 13 um test chip. • They are irradiating with 20 Ge. V protons at CERN right now to extend the studies done at the LBNL 88” cyclotron in FY 06. • LBNL simply provided test boards, a few chips, and advice, but we are getting a great deal in return • More on collaboration with European institutes later… May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 3

Analog test chip submitted Feb. 07 – resistor continuous reset. – current source continuous

Analog test chip submitted Feb. 07 – resistor continuous reset. – current source continuous reset. • nominal current 22 m. A/pixel 3. 6 mm • 130 nm bulk CMOS • 840 pixels complete with threshold and bias registers. • 2 basic charge-integrating amplifier designs: – Goal for final chip is ~10 m. A/pixel • Simulated ENC ~200 e- for 400 f. F input load and ~20 ns peaking time – Exact value depends on many tunable parameters May 2007 2. 8 mm Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 4

Analog test chip plans • • Expected chip delivery late May Test board in

Analog test chip plans • • Expected chip delivery late May Test board in fabrication now Initial “checkout” by Abder at LBNL Distribution of chips to other test efforts in June/July – Interest from European collaborators to participate in testing • Some irradiation possible in FY 07, but mainly in 08 – Hope that European colleagues will set up irradiation tests in FY 08 - no project fund request for this. – Note that all transistors are linear (with guard rings around Nmos) • Critical initial measurements expected – Threshold dispersion – Uniformity across array. Operating margin. – Current consumption, noise and timewalk May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 5

Pixel Upgrade Electronics Workshop • Held on March 22 at CERN following ATLAS-CMS Electronics

Pixel Upgrade Electronics Workshop • Held on March 22 at CERN following ATLAS-CMS Electronics (ACES) workshop. http: //indico. cern. ch/conference. Display. py? conf. Id=13957 • 7 electical engineers not presently involved in pixels attended this meeting – CPPM, Bonn, Nikef, Genova – Clearly there is interest • Work Plan drafted in April to foster efficient collaboration – First global chip designers’ pone meeting to go over this plan isnext week May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 6

Plans for FY 08 • Work-plan milestones – – Architecture definition: September 2007 Initial

Plans for FY 08 • Work-plan milestones – – Architecture definition: September 2007 Initial Design review: January 2008 Final Design review: September 2008 First full size chip submission: December 2008 • LBNL engineering manpower – – 100% Abder Mekkaoui: Lead IC designer, analog front end, integration 40% Dario Gnani: IC designer, High level description, readout logic 30% George Chao: Pad frame 10% Peter Denes: Organization, pads. (no cost to project) • LBNL purchases/fabrications – Assume a second iteration of front end design (if nothing else to fine tune lower current modifications): $65 K including test board. May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 7

FY 09 • Continue same level of design effort until submission – For Dec.

FY 09 • Continue same level of design effort until submission – For Dec. submission this is 25% of FY 08 manpower cost • Reduced effort still needed after submission in FY 09 for simulation and testing – Take 50% of FY 08 cost for remaining 75% of FY 09 • Finally need to cover test board design (based on existing TPLL) and fabrication – EE, drafter, and board fab cost. – Student-like personnel to operate test setup • Cost of engineering run to be paid out of BL replacement ATLAS project, which is M&O-B with the usual sharing. – 20% of $400 K May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 8

LBNL FE chip Cost breakdown FY 08 -09 May 2007 Pixel Electronics --- US

LBNL FE chip Cost breakdown FY 08 -09 May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 9

Chip Requirements Pixel size 50 x 250 mm 2 Bump pad diameter 12 mm

Chip Requirements Pixel size 50 x 250 mm 2 Bump pad diameter 12 mm Input DC-coupled negative polarity Normal pixel input capacitance range* 300 -500 f. F Long pixel input capacitance range* 450 -700 f. F In-time threshold with 20 ns gate 4000 e Two-hit time resolution 400 ns DC leakage current tolerance 100 n. A Single channel ENC sigma (400 f. F) 300 e Tuned threshold dispersion 100 e Analog supply current/pixel @400 f. F 10 m. A Radiation tolerance 200 MRad Average hit rate 200 MHz/cm 2 Acquisition mode Data driven with time stamp Time stamp precision 8 Readout initiation Trigger command Max. number of continuous triggers 16 Trigger latency 3. 2 ms Single chip data output rate 160 Mb/s * Low value given by planar sensors and high value by 3 D. May 2007 Very difficult. Critical for power distribution and material bits High luminosity and small radius. Wants new ROD Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 10

ROD development • • • ROD total bandwidth limited by output s-Link at 1.

ROD development • • • ROD total bandwidth limited by output s-Link at 1. 28 Gb/s. This is only enough for 8 chips at 160 Mb/s each. This would have to fed into the ROD on 32 40 Mb/s inputs. To read out a single R=4 cm layer would need 94 RODs! It would be much cheaper and reliable to build fewer new, faster RODs using modern components • Can keep the basic data flow architecture, but simply implement within new FPGA. • This is NOT yet an urgent need. Could in principle start in FY 09 instead of FY 08, but – There is available manpower in FY 08 – Early design would feed-back into chip I/O architecture, leading to a better system – There is synergy with PLL-based test setup needs May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 11

ROD & PLL test setup • Interface definition is common to ROD and PLL

ROD & PLL test setup • Interface definition is common to ROD and PLL test setup work, and is needed for chip architecture design. • Expertise at LBNL is common to ROD and PLL test setup (same people) • FY 08 Tasks to be covered in the ROD/PLL area are: – Interface definition – Schematic layout of revised PLL test card – Initial look at new generation candidate FPGA for replacement ROD. • FY 08 requested resources (split between chip and ROD) – 0. 2 FTE under 4. 1. 2. 1 – 0. 083 FTE under ROD – 10 K M&S under ROD (Xilinix evaluation boards) • FY 09 requested resources (split between chip and ROD) – 0. 53 FTE under 4. 1. 2. 1 (includes PLL test card layout & fab) – 0. 3 FTE under ROD (prototype BOC and ROD design) – 30 K M&S under 4. 1. 2. 1 (PLL test card fab) May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 12

LBNL ROD Cost breakdown FY 08 -09 May 2007 Pixel Electronics --- US ATLAS

LBNL ROD Cost breakdown FY 08 -09 May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 13

Other LBNL activities • Progress in FY 07 in – 3 D sensor testing

Other LBNL activities • Progress in FY 07 in – 3 D sensor testing and – Nanowire carpet hybrid pixel development • 3 D sensor testing – Minor involvement but very positive impact • Established characterization setup at CERN enabling test work by U. of Oslo • Provided test boards and debugging help • Results from this work used to specify load requirement on new 130 nm amplifier. – Will need to increase involvement in FY 09 once first 130 nm full chip is available • Note request for “tester” support in FY 09 4. 1. 2. 1. May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 14

Nanowire carpet hybrid pixels W. Kim (molecular foundry), C. Tindall (eng. ), H. Spieler

Nanowire carpet hybrid pixels W. Kim (molecular foundry), C. Tindall (eng. ), H. Spieler (phys. ), M. Garcia-Sciveres (phys. ), and brand new addition CERN Medipix group Concept shown at UCSC upgrade meeting Nov. 2005 May 2007 Realized implementation Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 15

Nanowire carpet hybrid pixels (cont. ) • Funding sources so far – – LBNL

Nanowire carpet hybrid pixels (cont. ) • Funding sources so far – – LBNL molecular foundry (FY 06) LBNL LDRD “surplus” (FY 06) ATLAS project R&D 0. 07 FTE (FY 07) No explicit ATLAS R&D request for FY 08 Diode behavior of NW carpet sample fabricated by C. Tindall in FY 07 May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 16