PERT Program Evaluation and Review Technique Estimation of

  • Slides: 32
Download presentation
PERT Program Evaluation and Review Technique

PERT Program Evaluation and Review Technique

Estimation of Task Times z In CPM, we assume that the task durations are

Estimation of Task Times z In CPM, we assume that the task durations are known with certainty. z This may not be realistic in many project settings. y How long does it take to design a switch? z PERT tries to account for the uncertainty in task durations. z Key question: What is the probability of completing project by given deadline? PERT SEEM 3530 2

CPM vs. PERT y. CPM (critical path method) y. PERT (program evaluation and review

CPM vs. PERT y. CPM (critical path method) y. PERT (program evaluation and review technique) z Both approaches work on a project network, which graphically portrays the activities of the project and their relationships. · CPM assumes that activity times are deterministic, while PERT views the time to complete a task as a random variable. PERT SEEM 3530 3

Estimation of the duration of project activities (1) The deterministic approach (CPM), which ignores

Estimation of the duration of project activities (1) The deterministic approach (CPM), which ignores uncertainty thus results in a point estimate (e. g. The duration of task 1 = 23 hours, etc. ) (2) The stochastic approach (PERT), which considers the uncertain nature of project activities by estimating the expected duration of each activity and its corresponding variance. y. To analyse the past data to construct the probabilistic distribution of a task. PERT SEEM 3530 4

Estimation of the activity duration z Example: An activity was performed 40 times in

Estimation of the activity duration z Example: An activity was performed 40 times in the past, requiring a time between 10 to 70 hours. The figure below shows the frequency distribution. PERT SEEM 3530 5

Estimation of the activity duration z. The probability distribution of the activity is approximated

Estimation of the activity duration z. The probability distribution of the activity is approximated by a probability frequency distribution. PERT SEEM 3530 6

Estimation of the activity duration z. In project scheduling, we usually use a beta

Estimation of the activity duration z. In project scheduling, we usually use a beta distribution to represent the time needed for each activity. PERT SEEM 3530 7

Estimation of the activity duration · Three key values we use in the time

Estimation of the activity duration · Three key values we use in the time estimate for each activity: a = optimistic time, which means that there is little chance that the activity can be completed before this time; m = most likely time, which will be required if the execution is normal; b = pessimistic time, which means that there is little chance that the activity will take longer. PERT SEEM 3530 8

Estimation of Mean and SD · The expected or mean time is given by:

Estimation of Mean and SD · The expected or mean time is given by: D= (a+4 m+b)/6 z. The variance is: V = (b-a) 2/36 § The standard deviation is (b - a)/6 z For our example (Figure 7 -3), we have a=10, b=70, m=35. Therefore D=36. 6, and V 2 =100. PERT SEEM 3530 9

Estimation of Mean and SD Beta-distribution a m b Expected task time: Standard deviation:

Estimation of Mean and SD Beta-distribution a m b Expected task time: Standard deviation: PERT SEEM 3530 10

The PERT Approach The PERT (Program evaluation and review technique) approach addresses situations where

The PERT Approach The PERT (Program evaluation and review technique) approach addresses situations where uncertainties must be considered. PERT SEEM 3530 11

The PERT Approach (cont’d) § Now assume that the activity times are independent random

The PERT Approach (cont’d) § Now assume that the activity times are independent random variables. § Further, assume that there are n activities in the project, k of which are critical. Denote the activity times of the critical activities by the random variables di with mean E(di) and variances V(di), for i=1, 2, …, k. § Then, the total project time (the total length of the critical path) is the random variable: § X= d 1 + d 2 +, …, +dk PERT SEEM 3530 12

The PERT Approach (cont’d) § The mean project length, E(X), and its variance, V(X):

The PERT Approach (cont’d) § The mean project length, E(X), and its variance, V(X): E(X)= E(d 1)+E(d 2)+, …, +E(dk) V(X)= V(d 1)+V(d 2)+, …, +V(dk) § Assumption: § Activity times are independent random variables. § The project duration (=sum of times of activity on a critical path) is normally distributed. § Based on the Central Limit Theorem, which states that the distribution of the sum of independent random variables is approximately normal when the number of terms in the sum if sufficiently large. PERT SEEM 3530 13

The PERT Approach (cont’d) § Using a normal distribution, the probability of completing the

The PERT Approach (cont’d) § Using a normal distribution, the probability of completing the project in not more than some given time T: X-E(X) T -E(X) P(X T) = P( ------- ) = P(Z -----) V(X)1/2 where Z is the standard normal deviate with mean 0 and variance 1. • The probability for P(Z < ), given any , can be found using normal distribution tables. PERT SEEM 3530 14

PERT SEEM 3530 15

PERT SEEM 3530 15

Example: Shopping Mall Renovation Activity A: Prepare initial design B: Identify new potential clients

Example: Shopping Mall Renovation Activity A: Prepare initial design B: Identify new potential clients C: Develop prospectus for tenants D: Prepare final design E: Obtain planning permission F: Obtain finance from bank G: Select contractor H: Construction I: Finalize tenant contracts J: Tenants move in PERT SEEM 3530 IP a 1 4 A 2 A 1 D 1 E 1 D 2 G, F 10 B, C, E 6 I, H 1 m 3 5 3 8 2 3 4 17 13 2 b 5 12 10 9 3 5 6 18 14 3 16

Example: Issues to Address 1. Schedule the project. 2. What is the probability of

Example: Issues to Address 1. Schedule the project. 2. What is the probability of completing the project in 36 weeks? PERT SEEM 3530 17

Expected Activity Time and SD Act A B C D E F G H

Expected Activity Time and SD Act A B C D E F G H I J PERT a 1 4 2 1 1 1 2 10 6 1 m 3 5 3 8 2 3 4 17 13 2 b 5 12 10 9 3 5 6 18 14 3 SEEM 3530 t 3 6 4 7 2 3 4 16 12 2 2 0. 44 1. 78 0. 11 0. 44 1. 78 0. 11 18

CPM with Expected Activity Times I, 12 B, 6 1 J, 2 E, 2

CPM with Expected Activity Times I, 12 B, 6 1 J, 2 E, 2 C, 4 End F, 3 A, 3 PERT D, 7 SEEM 3530 G, 4 H, 16 19

Critical Path and Expected Time 1. Critical path: A-D-E-F-H-J. 2. Expected Completion time: 33

Critical Path and Expected Time 1. Critical path: A-D-E-F-H-J. 2. Expected Completion time: 33 weeks 3. What is the probability to complete the project within 36 weeks? -- Use the critical path to assess the probability PERT SEEM 3530 20

Probability Assessment Expected project completion time: Sum of the expected activity times along the

Probability Assessment Expected project completion time: Sum of the expected activity times along the critical path. Used to obtain probability of project = 3+7+2+3+16+2 = 33 completion Variance of project-completion time Sum of the variances along the critical path. 2 = 0. 44+1. 78+0. 11+0. 44+1. 78+0. 11= 4. 66 = 2. 15 PERT SEEM 3530 21

Assessment by Normal Distribution P(X 36) = ? Assume X ~ N(33, 2. 152)

Assessment by Normal Distribution P(X 36) = ? Assume X ~ N(33, 2. 152) Normal Distribution = 2. 15 - 36 - 33 T = = 1. 4 z =. 2. 15 Standardized Normal Distribution =1 z = 33 36 PERT P(Z 1. 4) = ? X SEEM 3530 = 0 1. 4 z Z 22

Obtain the Probability Standardized Normal Probability Table (Portion) Z . 00. 01 . 02

Obtain the Probability Standardized Normal Probability Table (Portion) Z . 00. 01 . 02 P(Z<1. 4) = 0. 9192 z=1 0. 0. 5000. 5040. 5080 : : 1. 4. 9192. 9207. 9222 1. 5. 9332. 9345. 9357 PERT SEEM 3530 . 9192 z=0 1. 4 z P( 0 < Z < z ) 23

The PERT Approach: A Summary 1. 2. 3. 4. 5. For each activity i,

The PERT Approach: A Summary 1. 2. 3. 4. 5. For each activity i, assess its probability distribution or assume a beta distribution and obtain estimates ai, bi, and mi. These values could by supplied by the project manager or experts working in the field. Compute the mean and variance for each activity. Apply CPM to determine the critical path, using the activity means as the activity times for CPM computation. Once the critical activities are identified, sum their means and variances to find the mean and the variance of the project length. Use the formula to compute P(X T) (see above) to compute the probability that the project finishes within some desired time/due date. PERT SEEM 3530 24

Completion Time with a Given Prob. § § Using PERT, it is also possible

Completion Time with a Given Prob. § § Using PERT, it is also possible to estimate the completion time for a desired completion probability. For example, for a 95% probability the corresponding Z value is Z 0. 95 = 1. 64. Solving for the time T for which the probability to complete the project is 95%, we get Z 0. 95 = (T – 33)/2. 15 = 1. 64 T = 33 + (2. 15)(1. 64) = 36. 5 PERT SEEM 3530 25

A Shortcoming of Standard PERT The standard PERT method ignores all activities not on

A Shortcoming of Standard PERT The standard PERT method ignores all activities not on the critical path. What is the probability to complete the project within 17 weeks? PERT SEEM 3530 26

A Modification Identify each sequence of activities leading from the start to the end,

A Modification Identify each sequence of activities leading from the start to the end, and then calculate separately the probability for each path to complete by a given date. § The above can be done by assuming that the central limit theorem holds for each sequence and then applying normal distribution theory to calculate the individual sequence (path) probabilities. § Assume, if necessary, that the paths are statistically independent (i. e. the time to traverse each path in the network is independent of what happens on the other paths). § Although this additional assumption is rarely true in practice, empirical evidence suggests that good results can be obtained. PERT SEEM 3530 27 §

Modified Probability of Completion § § PERT Once the calculations on all paths (at

Modified Probability of Completion § § PERT Once the calculations on all paths (at least those that we are concerned with) are performed, the probability of completing the whole project can be calculated. Assume there are n paths, with completion times X 1, X 2, …, Xn. Then, the probability of completing the project is P(X T) = P(X 1 T) P(X 2 T) … P(Xn T) SEEM 3530 28

Example: Modified Calculations § § PERT If no uncertainty exists, then the critical path

Example: Modified Calculations § § PERT If no uncertainty exists, then the critical path is (A-B) and exactly 17 weeks are required to finish the project. If the durations of the four activities are normally distributed (the means and variances are as shown in the figure above), then the durations of the two paths are normally distributed as follows: length (A-B) = X 1 ~ N(17, 3. 61) length (C-D) = X 2 ~ N(16, 3. 35) SEEM 3530 29

The Probability Density Functions PERT SEEM 3530 30

The Probability Density Functions PERT SEEM 3530 30

Project Completion Probabilities § The project can be completed in 17 weeks only if

Project Completion Probabilities § The project can be completed in 17 weeks only if both (A-B) and (C-D) are completed within that time. The probabilities for the two paths to be completed in that time are given below: 17 -17 P(X 1 17) = P(Z ------ ) = P(Z 0)=0. 5 3. 61 17 -16 P(X 2 17) = P(Z ------ ) = P(Z 0. 299)=0. 62 3. 35 § Thus, the probability of completing the project within 17 weeks is P(X 17) = P(X 1 17) P(X 2 17) = (0. 5)(0. 62)=0. 31 = 31 %. PERT SEEM 3530 31

PERT - Summary z PERT accounts for uncertainty in activity times. z Assumptions: y

PERT - Summary z PERT accounts for uncertainty in activity times. z Assumptions: y Project completion time is sum of activity times on critical path. y Activities are probabilistically independent. y By CLT, project completion time is normally distributed. z PERT provides: y Expected project completion time y Probability of completion by deadline z Concerns: y Activities not necessarily independent y “Slack” activities with large variances y More than one critical path PERT SEEM 3530 32