Perinatal Asfiksi Tedavisinde Hipotermi Uygulamasi Meltem Seli M

  • Slides: 69
Download presentation
Perinatal Asfiksi Tedavisinde Hipotermi Uygulamasi Meltem Seli M. D. Division of Perinatal Medicine Yale

Perinatal Asfiksi Tedavisinde Hipotermi Uygulamasi Meltem Seli M. D. Division of Perinatal Medicine Yale University TJOD 2015

Definition –ACOG and Cerebral Palsy Task Force Perinatal Asphyxia or Neonatal encephalopathy is a

Definition –ACOG and Cerebral Palsy Task Force Perinatal Asphyxia or Neonatal encephalopathy is a clinically defined syndrome of disturbed neurologic function in the earliest days of life in an infant born at or beyond 35 weeks of gestation, manifested by a subnormal level of consciousness or seizures, and often accompanied by difficulty with initiating and maintaining respiration and depression of tone and reflexes.

Definition A. Apgar Score of Less Than 5 at 5 Minutes and 10 Minutes

Definition A. Apgar Score of Less Than 5 at 5 Minutes and 10 Minutes B. Fetal Umbilical Artery Acidemia <7. 0 C. Neuroimaging Evidence of Acute Brain Injury Seen on Brain Magnetic Resonance Imaging or Magnetic Resonance Spectroscopy Consistent With Hypoxia–Ischemia D. Presence of Multisystem Organ Failure Consistent With Hypoxic–Ischemic Encephalopathy

Etiology • Maternal: • Fetal: – Cardiac arrest – Fetomaternal hemorrhage – Asphyxiation –

Etiology • Maternal: • Fetal: – Cardiac arrest – Fetomaternal hemorrhage – Asphyxiation – Twin to twin transfusion – Severe anaphylaxis – Severe isoimmune hemolytic disease – Status epilepticus – Cardiac arrhythmia – Hypovolemic shock • Uteroplacental: – Placental abruption – Cord prolapse – Uterine rupture – Hyperstimulation with oxytocic agents

 Appearance of hypoxic-ischemic encephalopathy on axial diffusion-weighted magnetic resonance imaging. A, A normal

Appearance of hypoxic-ischemic encephalopathy on axial diffusion-weighted magnetic resonance imaging. A, A normal brain in a term newborn with no areas of restricted diffusion. B, Severely restricted diffusion in the basal ganglia and thalami, posterior limb of the internal capsule, and white matter. C, Focal restricted diffusion in the putamen and optic radiations.

Fetal Heart Rate Monitor Patterns Consistent With an Acute Peripartum or Intrapartum Event A

Fetal Heart Rate Monitor Patterns Consistent With an Acute Peripartum or Intrapartum Event A Category I or Category II fetal heart rate tracing when associated with Apgar scores of 7 or higher at 5 minutes, normal umbilical cord arterial blood (± 1 standard deviation), or both is NOT consistent with an acute hypoxic–ischemic event.

 A category II fetal heart rate pattern lasting 60 minutes or more that

A category II fetal heart rate pattern lasting 60 minutes or more that was identified on initial presentation with persistently minimal or absent variability and lacking accelerations, even in the absence of decelerations, is suggestive of a previously compromised or injured fetus.

 The patient who presents with a Category I fetal heart rate pattern that

The patient who presents with a Category I fetal heart rate pattern that converts to Category III as defined by the Eunice Kennedy Shriver National Institute of Child Health and Human Development guidelines is suggestive of a hypoxic–ischemic event.

What are the consequences of HIE? HIE contributes nearly ¼ of neonatal deaths and

What are the consequences of HIE? HIE contributes nearly ¼ of neonatal deaths and major morbidity 10 -15 % of babies with Hypoxic Ischemic Encephalopathy will die 25– 30% of HIE survivors will have long-term neurodevelopmental disabilities that include cerebral palsy, seizure disorder and mental retardation. Currently there are very few treatment options for HIE and few clinical trials of new modalities are underway. Lancet 2005; 365: 1147 -1152

Specific Type of SP Developmental Outcome is Spastic Quadriplegia or Dyskinetic Cerebral Palsy Other

Specific Type of SP Developmental Outcome is Spastic Quadriplegia or Dyskinetic Cerebral Palsy Other subtypes of cerebral palsy are less likely to be associated with acute intrapartum hypoxic– ischemic events.

Systemic Complications of HIE • Acute renal failure in up to 20% of asphyxiated

Systemic Complications of HIE • Acute renal failure in up to 20% of asphyxiated term infants • Myocardial dysfunction and hypotension in 28 -50% of term infants • Elevated LFTs in 80 -85% of term infants • Coagulation impairment is relatively common in severely asphyxiated infants • Supportive care required!!

Pathophysiology Hypoxia Diving Reflex Shunting of blood -> Brain Adrenals & Heart Away from

Pathophysiology Hypoxia Diving Reflex Shunting of blood -> Brain Adrenals & Heart Away from lungs, kidney gut & skin Multi Organ Injury Slide Courtesy of Dr Orna Rosen

Pathophysiology

Pathophysiology

Phases of Cerebral Injury • 2 phases to injury • Initial insult at birth

Phases of Cerebral Injury • 2 phases to injury • Initial insult at birth • Secondary failure starts within 6 -24 hours of birth • Therapeutic window of 6 hours Slide Courtesy of Dr Suhas Nafday, Director of Neonatal Cooling Program at CHAM

What is Hypothermia/Cooling Lowering the body temperature from standard 37 to 33. 5 -34

What is Hypothermia/Cooling Lowering the body temperature from standard 37 to 33. 5 -34 degrees using cooling wraps or cap Core temperature measured via rectal or esophageal probes After 72 hours, core temperature is slowly increased to 37 degrees over 24 hrs.

Inclusion Criteria for Brain Cooling Infant > 35 weeks’ gestation with at least ONE

Inclusion Criteria for Brain Cooling Infant > 35 weeks’ gestation with at least ONE of the following: 1. Apgar score of 5 at 10 minutes after birth 2. Continued need for assisted ventilation, including endotracheal or bag/mask ventilation, at 10 minutes after birth 3. Acidosis defined as either umbilical cord p. H or any arterial p. H within 60 minutes of birth <7. 00 4. Base deficit 16 mmol/L on an umbilical cord blood gas sample or any blood sample within 60 minutes of birth (arterial or venous blood) AND moderate to severe encephalopathy with or without seizures OR the presence of one or more signs in 3 of 6 categories on the chart (Modified Sarnat Score)

Exclusion Criteria • Infants expected to be > 6 hours of age at the

Exclusion Criteria • Infants expected to be > 6 hours of age at the time of cooling cap placement. Major congenital abnormalities, such as diaphragmatic hernia requiring ventilation, or congenital abnormalities suggestive of chromosomal anomaly (Trisomy 13, 18) or other syndromes that include brain dysgenesis • Imperforate anus (since this would prevent rectal temperature recordings) • Evidence of neurologically significant head trauma or skull fracture causing major intracranial hemorrhage. Subgaleal bleeding is a relative contraindication; the infant should be fully stabilized before cooling is initiated • Coagulopathy with active bleeding • Severe PPHN/ possible need for ECMO • Infants < 1, 800 g-birth weight • Infants “in extremis” (those infants for whom no other additional intensive management will be offered)

Head Cooling with “cool cap”

Head Cooling with “cool cap”

Whole body Cooling

Whole body Cooling

Historical Origins of Cooling Babies!! Hippocrates John Floyer in 1679 used a tub of

Historical Origins of Cooling Babies!! Hippocrates John Floyer in 1679 used a tub of ice to revive an infant who was not crying at delivery James Miller and Bjorn Westin in the 1950 s developed a scientific rationale for the use of hypothermia in "asphyxia neonatorum” in first case series Dropped out of favor after Silverman paper in Pediatrics 1958 -comments on heat loss (Wyatt et al. Pediatrics 1997)

Animal Studies Multiple studies of fetal Sheep, neonatal Rats, newborn Piglets Preservation of architecture

Animal Studies Multiple studies of fetal Sheep, neonatal Rats, newborn Piglets Preservation of architecture in cortex of cooled fetal sheep Control Cooled Gunn et al J of Clin Inv 1997

Animal Data Cooling needs to be started within ~ 6 h after birth (and

Animal Data Cooling needs to be started within ~ 6 h after birth (and earlier is better) It needs to be continued for at least 24 h (72 h is better) The brain needs to be cooled to 32 to 34ºC Prolonging the duration of hypothermia improves neuroprotection

How Hypothermia Prevents HIE damage? Metabolic rate of Brain Slows depolarization of brain cells

How Hypothermia Prevents HIE damage? Metabolic rate of Brain Slows depolarization of brain cells Accumulation of excitatory amino acids Release of free radicals Keeps integrity of brain cells membranes Apoptosis (not necrosis)

Question Population: Infants ≥ 35 weeks gestational age with moderate to severe neonatal encephalopathy

Question Population: Infants ≥ 35 weeks gestational age with moderate to severe neonatal encephalopathy Intervention: Brain cooling vs. conventional treatment Outcome: ◦ Death ◦ Neurodevelopmental disability ◦ Combined outcome

Cool Cap Trial -2005

Cool Cap Trial -2005

TOBY Trial – NEJM 2009

TOBY Trial – NEJM 2009

NICHD trial-2005

NICHD trial-2005

Less Mortality in Hypothermia group RR 0. 78, 95% CI 0. 66 to 0.

Less Mortality in Hypothermia group RR 0. 78, 95% CI 0. 66 to 0. 93, P=0. 005

Meta-analysis of 3 major trials

Meta-analysis of 3 major trials

Survival with normal neurological function at 18 months Relative risk 1. 53, 95% CI

Survival with normal neurological function at 18 months Relative risk 1. 53, 95% CI 1. 22 to 1. 93, P<0. 001 Edwards et al. BMJ 2010

Death or Severe Disability at 18 months Total RR 0. 81, 95% CI 0.

Death or Severe Disability at 18 months Total RR 0. 81, 95% CI 0. 71 to 0. 93, P=0. 002 Edwards et al. BMJ 2010

Adverse Effects Cooling was safe and did not result in serious sideeffects, which included:

Adverse Effects Cooling was safe and did not result in serious sideeffects, which included: ◦ slightly lower baseline heart rate (RR 5. 96, 95% CI 2. 15– 16. 49; RD 0. 07, 95% CI 0. 04– 0. 11), ◦ a marginally significant increase in the need for blood pressure support (RR 1. 17, 95% CI 1. 00– 1. 38; RD 0. 08, 95% CI 0. 00– 0. 17), ◦ more babies with a platelet count below 150 X 109 /litre (RR 1. 55, 95% CI 1. 14– 2. 11; RD 0. 09, 95% CI 0. 03– 0. 15). WHO policy statement on Cooling for newborns with hypoxic ischaemic encephalopathy 2014

Standard of Care - 2014 Data from large randomized clinical trials indicate that therapeutic

Standard of Care - 2014 Data from large randomized clinical trials indicate that therapeutic hypothermia, using either selective head cooling or systemic cooling, is an effective therapy for neonatal encephalopathy. Infants selected for cooling must meet the criteria outlined in published clinical trials. The implementation of cooling needs to be performed at centers that have the capability to manage medically complex infants.

Thank you Woodbridge, CT winter 2015

Thank you Woodbridge, CT winter 2015

Thank You

Thank You

European neo. n. EURO. network trial (Simbruner 08) Multicenter trial (n=129) terminated prior to

European neo. n. EURO. network trial (Simbruner 08) Multicenter trial (n=129) terminated prior to completion in 2006 Whole body cooling x 72 hours Differs from other trials ◦ Uses Griffiths General Quotient for neurodevelopmental assessment and Palisano score ◦ Included infants with moderate or severe a. EEG or EEG changes ◦ Used Morphine for both control and hypothermia groups

Eicher Trial 2005 Clinical signs Ø Cord p. H ≤ 7. 0 or BE

Eicher Trial 2005 Clinical signs Ø Cord p. H ≤ 7. 0 or BE ≥ 13 Ø Initial postnatal p. H < 7. 1 Ø Apgar score < 5 at 10 min Ø Need for resuscitation after 5 min Ø Fetal bradycardia (< 80 bpm x 15 min) Ø A postnatal hypoxic-ischemic event Hypothermic infants were cooled with plastic bags filled with ice and then placed on a cooling blanket servo-controlled at 33. 5 ± 0. 5° C Normothermic infants were kept at 37 ± 5° C Neurological signs Pediatric Neurology 2005 ; 32: 1 11 -17

Potential pathways for brain injury after hypoxiaischemia. Perlman J M Pediatrics 2006; 117: S

Potential pathways for brain injury after hypoxiaischemia. Perlman J M Pediatrics 2006; 117: S 28 -S 33 © 2006 by American Academy of Pediatrics

The Cool Cap Trial ● 234 infants studied ◦ 75% U. S. sites ◦

The Cool Cap Trial ● 234 infants studied ◦ 75% U. S. sites ◦ 25% UK, Canada, New Zealand ● Safety reviews at 25, 50 and 75% enrolment revealed no major concerns ● Follow up available on 218 (93%) infants ◦ 8 cooled and 8 control infants lost to follow up Slide Courtesy of Dr Suhas Nafday, Director of Neonatal Cooling Program at CHAM Gluckman P et al Lancet 365: 663, 2005

The Cool Cap Trial : Primary Outcomes Final Count 234 Lost to Follow-up 16

The Cool Cap Trial : Primary Outcomes Final Count 234 Lost to Follow-up 16 18 -Month Primary Outcome 218 Cooled 108 Favourable 49 (45%) Unfavourable 59 (55%) Slide Courtesy of Dr Suhas Nafday, Director of Neonatal Cooling Program Control 110 Favourable 37 (34%) Unfavourable 73 (66%) Gluckman P et al Lancet 365: 663, 2005

The Cool Cap Trial: If you exclude severely abnormal a. EEG A priori defined

The Cool Cap Trial: If you exclude severely abnormal a. EEG A priori defined group excluding infants with severely abnormal a. EEG w/seizure n=172 Cooled 84 Favourable 44 (52%) Unfavourable 40 (48%) Control 88 Favourable 30 (34%) Unfavourable 58 (66%) Fisher’s exact p=0. 02: logistic regression, OR: 0. 42 (0. 22, 0. 80), p=0. 009 Slide Courtesy of Dr Suhas Nafday, Gluckman P et al Lancet 365: 663, 2005

Intermediate a. EEG group – cooled vs control odds ratio 0· 47 95% CI

Intermediate a. EEG group – cooled vs control odds ratio 0· 47 95% CI 0· 26– 0· 87, p=0· 021

The Cool CAP trial : Adverse Effects No increase in severe hypotension despite full

The Cool CAP trial : Adverse Effects No increase in severe hypotension despite full volume and inotrope support: 3 cooled vs. 3 non-cooled infants (p=1. 00) ● Scalp edema common (32 cooled and 1 control infant, p<0. 0001), but transient ● One case of scalp damage under the cap in an infant dying of severe hypotension and coagulopathy ● Sinus bradycardia, without hypotension, was very common during cooling and reversed on rewarming ● Slide Courtesy of Dr Suhas Nafday Gluckman P et al Lancet 365: 663, 2005

What is the difference between Whole body cooling and Selective head cooling? • WBC

What is the difference between Whole body cooling and Selective head cooling? • WBC provides homogenous cooling to all structures of nervous system (peripheral and central) Laptook et al Pediatrics 2001 • SHC combined with some body cooling provides cooling to the peripheral structures but minimizes temperature gradients across the brain (Thorensen et al. Ped Res 2001) • SHC may have less adverse side effects than WBC cooling

Intervention needed Insult (~ 30 min) Hypoxic depolarization Cell lysis Excitotoxins Calcium Entry Latent

Intervention needed Insult (~ 30 min) Hypoxic depolarization Cell lysis Excitotoxins Calcium Entry Latent Secondary (6 -15 h) (3 -10 d) Recovery of oxidative metabolism Apoptotic cascade 2° inflammation Calcium Entry Reperfusion Failing oxidative metabolism seizures Cytotoxic edema Excitotoxins Final cell death NEURO TOXIC CASCADE IN HIE – Ferriero, 2008

“Main Players” • Excitatory Amino Acids • Intracellular Calcium • Free Radicals • Inflammatory

“Main Players” • Excitatory Amino Acids • Intracellular Calcium • Free Radicals • Inflammatory Mediators • Nitric Oxide Synthase • Xanthine Oxidase Papadoupoulous et al Neoreviews 2010 Neuroprotective Strategies • cerebral metabolic rate (Hypothermia*) • Excitatory Amino Acid Antagonists • Oxygen Free Radical Inhibitors / Scavengers* • Prevention of Nitric Oxide Formation • Growth Factors (apoptosis inhibition)

Meta-analysis of all Trials Edwards et al. BMJ 2010

Meta-analysis of all Trials Edwards et al. BMJ 2010

What do the combined results show? Trial Cool Cap (n=218) TOBY (n=325) NICHD RR

What do the combined results show? Trial Cool Cap (n=218) TOBY (n=325) NICHD RR of Death or Severe disability at 18 months 0. 82 Confidence Interval 0. 86 0. 68 -1. 07 0. 72 0. 54 - 0. 95 0. 66 -1. 02

Hypothermia during transport? Infant cooling evaluation or ICE trial (Jacobs et al – Hot

Hypothermia during transport? Infant cooling evaluation or ICE trial (Jacobs et al – Hot topics 2008) Whole Body Cooling x 72 hrs started 2002 Differs from other trials ◦ ◦ Simple eligibility Criteria Included infants outborn (70%) Included infants 35 weeks or more Both passive and active cooling on transport Decrease in mortality in cooled group Awaiting neurodevelopmental outcomes

European neo. n. EURO. network trial (Simbruner 08) Results: Hypothermia group : ◦ More

European neo. n. EURO. network trial (Simbruner 08) Results: Hypothermia group : ◦ More Survival free of severe disability Relative Risk 2. 86 with CI (1. 58 -5. 19) ◦ Severe Disability was less Relative Risk 0. 34 with CI (0. 2 -0. 57) ◦ Reduction in Cerebral Palsy ◦ Trend to reduction of cortical blindness, hearing loss ◦ Same held true for infants for both severe and moderate encephalopathy group

Eicher Trial 05 ● Enrolled 65 infants ● 33 hypothermia ● 32 control ●

Eicher Trial 05 ● Enrolled 65 infants ● 33 hypothermia ● 32 control ● Outcome: incidence of abnormal neurodevelopmental scores by Bayley II (follow-up done on only 28 infants) at 12 months of age ● Death or severe neuromotor disability was 52% in the hypothermia group and 84% in the normothermia group (p=0. 019) -- Mortality: 31% cooled & 42% controls Eicher D et al Pediatr Neurol 32: 11 -34, 2005

Hypothermia for Perinatal HIE Where should it be done and by whom? Guidelines l

Hypothermia for Perinatal HIE Where should it be done and by whom? Guidelines l To implement brain cooling, HIE should be defined by the rigorous criteria and published protocols (Body Cooling or Cool. Cap) and should be strictly adhered to l Appropriate personnel need to be available day and night to implement the protocol l Collection of appropriate data and assurance of followup after discharge to ascertain outcome Executive Summary of the NICHD Workshop on Hypothermia and Perinatal Asphyxia J Pediatr 2006; 148 Slide Courtesy of Dr Suhas Nafday, Director of Neonatal Cooling Program at CHAM

Hypothermia for Perinatal HIE Where should it be done and by whom? Guidelines •

Hypothermia for Perinatal HIE Where should it be done and by whom? Guidelines • Providers must be highly experienced in evaluating treatment candidates, knowledgeable in the techniques to administer hypothermia, and have a comprehensive follow -up program to determine neurodevelopmental outcome • Large regional referral centers will be critical for providing this intervention, given that more than 40% of the patients in the Body Cool trial were out-born • Need for longer follow-up of infants receiving hypothermia Executive Summary of the NICHD Workshop on Hypothermia and Perinatal Asphyxia J Pediatr 2006; 148

The Neonatal Brain Cooling Program at The Children’s Hospital at Montefiore Regional Cooling Centers

The Neonatal Brain Cooling Program at The Children’s Hospital at Montefiore Regional Cooling Centers Consortium § § § § Children’s Hospital at Montefiore Presbyterian Hospital-Weill Cornell Medical College North Shore - Long Island Jewish Health System NYU Medical Center Mt. Sinai Medical Center Westchester Medical Center Morgan Stanley Hospital (Columbia University Medical Center) Winthrop-University Hospital Referring Institutions § § § Montefiore North (Previously OLM) Jacobi Medical Center North Central Bronx Hospital Lincoln Hospital and Mental Health Center St. Barnabas Hospital Flushing Hospital Medical Center Slide Courtesy of Dr Suhas Nafday, Director of Neonatal Cooling Program at CHAM

Management in the Delivery Room § § § Resuscitation of asphyxiated infants should be

Management in the Delivery Room § § § Resuscitation of asphyxiated infants should be done according to NRP guidelines using 100% O 2. The radiant warmer should be turned off as soon as adequate ventilation and heart rate are obtained Maintain rectal temperature at 35 + 0. 5 Cº range; if necessary use radiant warmer to prevent overcooling of the infant Slide Courtesy of Dr Suhas Nafday, Director of Neonatal Cooling Program at CHAM

 Neonatal Hypothermia Program at CHAM The time frame for neonatal therapeutic hypothermia is

Neonatal Hypothermia Program at CHAM The time frame for neonatal therapeutic hypothermia is critical-Treatment must be administered within six hours of birth. Neonatal patient 36 weeks or greater, and has suffered possible brain injury during birth, please call us immediately at (718) 904 -4032 Upon arrival at the Weiler NICU, an a. EEG and neurological assessment will determine if therapeutic intervention is appropriate for the infant Questions about Weiler’s Neonatal Therapeutic Hypothermia Program can be referred to Suhas Nafday, MD, at 718 -904 -4105, snafday@montefiore. org Slide Courtesy of Dr Suhas Nafday, Director of Neonatal Cooling Program at CHAM

Practical Tips for NICU’s: Transferring Newborns for Cooling Educate staff, especially ‘off-hours’ personnel to

Practical Tips for NICU’s: Transferring Newborns for Cooling Educate staff, especially ‘off-hours’ personnel to recognize eligibility for cooling Besides providing cardiorespiratory stability: IV glucose, ASAP Avoid Hyperoxia and Hyperthermia Use double lumen UV lines, low line OK for D 10 W Initiate transport call ASAP, don’t wait for lines/images/labs ◦ Discuss cooling but make no promise re: use and outcome ◦ ◦ Slide Courtesy of Dr Suhas Nafday, Director of Neonatal Cooling Program at CHAM

REQUESTS PRIOR TO TRANSPORT TEAM ARRIVAL Transport consent should be obtained from parents. We

REQUESTS PRIOR TO TRANSPORT TEAM ARRIVAL Transport consent should be obtained from parents. We would FAX the consent form. Please return the signed form ASAP @ 718 -904 -2649. Clean the head and get a head circumference prior to arrival of the transport team to facilitate placement of the leads and the correct size of Cool Cap Secure vascular access-placement of double/single lumen umbilical vein catheter and umbilical artery catheter prior to departure, if there is time Ventilatory support is necessary during hypothermia treatment Maintain skin temperature at greater than 36°C and less than 37 °C Don’t treat with phenobarbital (prophylactic treatment) unless there is evidence of clinical seizures. Slide Courtesy of Dr Suhas Nafday, Director of Neonatal Cooling Program at CHAM

Special Considerations Patients who clearly exhibit signs of severe HIE on early neurologic evaluation

Special Considerations Patients who clearly exhibit signs of severe HIE on early neurologic evaluation (Sarnat 3), but normal tracings on a. EEG should be offered hypothermia treatment Patients who have moderate HIE on neurologic exam with normal a. EEG can be monitored with continuous a. EEG recording up to 6 hours of life and treated with hypothermia if a. EEG becomes abnormal If these inclusion/exclusion criteria are met and infants are found eligible for cooling, the hypothermia treatment can be initiated No informed consent is necessary (FDA approved devise), however parents would be given written information about the treatment Slide Courtesy of Dr Suhas Nafday, Director of Neonatal Cooling Program at CHAM

Unanswered Questions What is the optimal ◦ ◦ Depth of hypothermia? Duration of hypothermia?

Unanswered Questions What is the optimal ◦ ◦ Depth of hypothermia? Duration of hypothermia? Mode of delivery- Whole body vs. Selective? Impact of time of initiation? Starting at resuscitation? After 6 hours? Use of a. EEG to target treatment to babies that are more likely to benefit? Long term follow up more than 18 -22 months? Benefit of using combined treatment?

What new combination treatments are under investigation? Phenobarbitol – China- Lin J Perinat 2006

What new combination treatments are under investigation? Phenobarbitol – China- Lin J Perinat 2006 CT scan Neonatal NBS

What new combination treatments are under investigation? Morphine- n. EURO trial Topiramate + delayed

What new combination treatments are under investigation? Morphine- n. EURO trial Topiramate + delayed hypothermia > 6 hours in neonatal rats – Liu 2004 Hypoxia + PBS Hypoxia + Topiramate Anti-inflammatory agents? Xanthine oxidase werecells? sacrificed at 35 days of age inhibitors? Rats Stem

Alistar Gunn – Hot Topics 2008 “ Cooling is An Evolving Therapy” There are

Alistar Gunn – Hot Topics 2008 “ Cooling is An Evolving Therapy” There are too many unanswered questions for hypothermia to be a true “standard of care” But…………. . We don’t need to wait for another 100 years to start cooling babies!!!! Randomization to normothermia is no longer reasonable

Pathophysiology • The immature brain is in some ways more resistant to hypoxic-ischemic events

Pathophysiology • The immature brain is in some ways more resistant to hypoxic-ischemic events compared to older children & adults – This may be due to: • Lower cerebral metabolic rate • Immaturity in the development of the balance of neurotransmitters • Plasticity of the immature CNS

Pathophysiology • Gestational age plays an important role in the susceptibility of CNS structures

Pathophysiology • Gestational age plays an important role in the susceptibility of CNS structures –< 20 weeks: Insult leads to neuronal heterotopia or polymicrogyria – 26 -36 weeks: Insult affects white matter, leading to periventricular leukomalacia

Management - Hypothermia • Has become standard of care • Whole-body and head-cooling available

Management - Hypothermia • Has become standard of care • Whole-body and head-cooling available –Unclear if one regimen is superior to the other currently either one is utilized, based on availability • Aim to get core (rectal) temperature to 33 -35º C for 72 hours