Penyelesaian Persamaan Linier Simultan Nana Ramadijanti Persamaan Linier
































































- Slides: 64

Penyelesaian Persamaan Linier Simultan Nana Ramadijanti

Persamaan Linier Simultan n Persamaan linier simultan adalah suatu bentuk persamaan-persamaan yang secara bersama-sama menyajikan banyak variabel bebas Bentuk persamaan linier simultan dengan m persamaan dan n variabel bebas n aij untuk i=1 s/d m dan j=1 s/d n adalah koefisien atau persamaan n n simultan xi untuk i=1 s/d n adalah variabel bebas pada persamaan simultan

Persamaan Linier Simultan n n Penyelesaian persamaan linier simultan adalah penentuan nilai xi untuk semua i=1 s/d n yang memenuhi semua persamaan yang diberikan. AX = B Matrik A = Matrik Koefisien/ Jacobian. Vektor x = vektor variabel vektor B = vektor konstanta.

Persamaan Linier Simultan n Persamaan Linier Simultan atau Sistem Persamaan Linier mempunyai kemungkinan solusi : n n n Tidak mempunyai solusi Tepat satu solusi Banyak solusi

Augmented Matrix n n matrik yang merupakan perluasan matrik A dengan menambahkan vector B pada kolom terakhirnya, dan dituliskan: Augmented (A) = [A B]

Contoh 1 : n n Seorang pembuat boneka ingin membuat dua macam boneka yaitu boneka A dan boneka B. Kedua boneka tersebut dibuat dengan menggunakan dua macam bahan yaitu potongan kain dan kancing. Boneka A membutuhkan 10 potongan kain dan 6 kancing, sedangkan boneka B membutuhkan 8 potongan kain dan 8 kancing. Permasalahannya adalah berapa buah boneka A dan boneka B yang dapat dibuat dari 82 potongan kain dan 62 kancing ?

Contoh 1 n Permasalahan ini dapat dimodelkan dengan menyatakan : n n n Untuk setiap bahan dapat dinyatakan bahwa: n n n x = jumlah boneka A y = jumlah boneka B Potongan kain 10 untuk boneka A + 8 untuk boneka B = 82 Kancing 6 untuk boneka A + 8 untuk boneka B = 62 Atau dapat dituliskan dengan : 10 x + 8 y = 82 6 x + 8 y = 62 n Penyelesaian dari permasalahan di atas adalah penentuan nilai x dan y yang memenuhi kedua persamaan di atas.

Contoh 2 : n Perhatikan potongan peta yang sudah diperbesar (zoom) sebagai berikut : 3 4 2 1 n n n Perhatikan bahwa pada ke-4 titik tersebut dihubungkan dengan garis lurus, sehingga tampak kasar. Untuk menghaluskannya dilakukan pendekatan garis dengan kurva yang dibentuk dengan fungsi pendekatan polinomial. Dari fungsi polinomial yang dihasilkan kurva dapat digambarkan dengan lebih halus.

Contoh 2 : n n n 4 titik yang ditunjuk adalah (2, 3), (7, 6), (8, 14) dan (12, 10). 4 titik ini dapat didekati dengan fungsi polinom pangkat 3 yaitu : Bila nilai x dan y dari 4 titik dimasukkan ke dalam persamaan di atas akan diperoleh model persamaan simultan sebagai berikut : Titik 1 3 = 8 a + 4 b + 2 c + d Titik 2 6 = 343 a + 49 b + 7 c + d Titik 3 14 = 512 a + 64 b + 8 c + d Titik 4 10 = 1728 a + 144 b + 12 c + d Nilai a, b, c dan d adalah penyelesaian dari permasalahan di atas.

Contoh 2 : n Setelah nilai a, b, c dan d diperoleh maka persamaan polinomialnya didapatkan dengan menggunakan step x yang lebih kecil dapat digambarkan grafiknya dengan lebih halus.

Theorema 4. 1. n Suatu persamaan linier simultan mempunyai penyelesaian tunggal bila memenuhi syarat sebagai berikut. n n n Ukuran persamaan linier simultan bujursangkar, dimana jumlah persamaan sama dengan jumlah variable bebas. Persamaan linier simultan non-homogen dimana minimal ada satu nilai vector konstanta B tidak nol atau ada bn 0. Determinan dari matrik koefisien persamaan linier simultan tidak sama dengan nol.

Metode Analitik n n n metode grafis aturan Crammer invers matrik

Metode Numerik n n n Metode Eliminasi Gauss-Jordan Metode Iterasi Gauss-Seidel

Metode Eliminasi Gauss n n Metode Eliminasi Gauss merupakan metode yang dikembangkan dari metode eliminasi, yaitu menghilangkan atau mengurangi jumlah variable sehingga dapat diperoleh nilai dari suatu variable bebas matrik diubah menjadi augmented matrik :

Metode Eliminasi Gauss n ubah matrik menjadi matrik segitiga atas atau segitiga bawah dengan menggunakan OBE (Operasi Baris Elementer).

Operasi Baris Elementer n n Metode dasar untuk menyelesaikan Sistem Persamaan Linier adalah mengganti sistem yang ada dengan sistem yang baru yang mempunyai himp solusi yang sama dan lebih mudah untuk diselesaikan Sistem yang baru diperoleh dengan serangkaian step yang menerapkan 3 tipe operasi. Operasi ini disebut Operasi Baris Elementer 1. Multiply an equation through by an nonzero constant. 2. Interchange two equation. 3. Add a multiple of one equation to another.

Metode Eliminasi Gauss n Sehingga penyelesaian dapat diperoleh dengan:

Contoh : n n Selesaikan sistem persamaan berikut: Augmented matrik dari persamaan linier simultan tersebut :

Contoh : n Lakukan operasi baris elementer

Contoh : n Penyelesaian :

Echelon Forms This matrix which have following properties is in reduced rowechelon form (Example 1, 2). 1. If a row does not consist entirely of zeros, then the first nonzero number in the row is a 1. We call this a leader 1. 2. If there any rows that consist entirely of zeros, then they are grouped together at the bottom of the matrix. 3. In any two successive rows that do not consist entirely of zeros, the leader 1 in the lower row occurs farther to the right than the leader 1 in the higher row. 4. Each column that contains a leader 1 has zeros everywhere else. n A matrix that has the first three properties is said to be in rowechelon form (Example 1, 2). n A matrix in reduced row-echelon form is of necessity in rowechelon form, but not conversely. n

Example 1 Row-Echelon & Reduced Row-Echelon form n reduced row-echelon form: n row-echelon form:

Example 2 More on Row-Echelon and Reduced Row-Echelon form n n All matrices of the following types are in row-echelon form ( any real numbers substituted for the *’s. ) : All matrices of the following types are in reduced rowechelon form ( any real numbers substituted for the *’s. ) :

Contoh Solusi dari Sistem Pers Linier Anggaplah ini adalah matrik dari Sistem Persamaan Linier yang telah direduksi dengan bentuk row echelon. Solution (a)

Example 3 Solutions of Four Linear Systems (b 1) Solution (b) free variables leading variables

Example 3 Solutions of Four Linear Systems (b 2) Free variabel kita misalkan dengan t. Sehingga selanjutnya dapat kita tentukan leading variabelnya. Sistem Persamaan Linier menghasilkan banyak solusi

Example 3 Solutions of Four Linear Systems (c 1) Solution (c) 1. Pada baris ke-4 semuanya nol sehingga persamaan ini dapat diabaikan

Example 3 Solutions of Four Linear Systems (c 2) Solution (c) 2. Selesaikan leading variabel dengan free variabel 3. Free variabel kita misalkan dengan t (sembarang value). Sehingga Sistem Persamaan Linier menghasilkan banyak solusi

Example 3 Solutions of Four Linear Systems (d) Solution (d): Persamaan terakhir pada Sistem Persamaan Linier Karena persamaan ini tidak konsisten, maka Sistem ini tidak mempunyai solusi

Example 3 Solutions of Four Linear Systems (d) Solution (d): the last equation in the corresponding system of equation is Since this equation cannot be satisfied, there is no solution to the system.

Elimination Methods (1/7) n We shall give a step-by-step elimination procedure that can be used to reduce any matrix to reduced row-echelon form.

Elimination Methods (2/7) n Step 1. Locate the leftmost column that does not consist entirely of zeros. Leftmost nonzero column n Step 2. Interchange the top row with another row, to bring a nonzero entry to top of the column found in Step 1. The 1 th and 2 th rows in the preceding matrix were interchanged.

Elimination Methods (3/7) n Step 3. If the entry that is now at the top of the column found in Step 1 is a, multiply the first row by 1/a in order to introduce a leading 1. The 1 st row of the preceding matrix was multiplied by 1/2. n Step 4. Add suitable multiples of the top row to the rows below so that all entires below the leading 1 become zeros. -2 times the 1 st row of the preceding matrix was added to the 3 rd row.

Elimination Methods (4/7) n Step 5. Now cover the top row in the matrix and begin again with Step 1 applied to the submatrix that remains. Continue in this way until the entire matrix is in rowechelon form. Leftmost nonzero column in the submatrix The 1 st row in the submatrix was multiplied by -1/2 to introduce a leading 1.

Elimination Methods (5/7) n Step 5 (cont. ) -5 times the 1 st row of the submatrix was added to the 2 nd row of the submatrix to introduce a zero below the leading 1. The top row in the submatrix was covered, and we returned again Step 1. Leftmost nonzero column in the new submatrix The first (and only) row in the new submetrix was multiplied by 2 to introduce a leading 1. n The entire matrix is now in row-echelon form.

Elimination Methods (6/7) n Step 6. Beginning with las nonzero row and working upward, add suitable multiples of each row to the rows above to introduce zeros above the leading 1’s. 7/2 times the 3 rd row of the preceding matrix was added to the 2 nd row. -6 times the 3 rd row was added to the 1 st row. 5 times the 2 nd row was added to the 1 st row. n The last matrix is in reduced row-echelon form.

Elimination Methods (7/7) n n n Step 1~Step 5: the above procedure produces a row -echelon form and is called Gaussian elimination. Step 1~Step 6: the above procedure produces a reduced row-echelon form and is called Gaussian. Jordan elimination. Every matrix has a unique reduced row-echelon form but a row-echelon form of a given matrix is not unique.

Algoritma Metode Eliminasi Gauss

Metode Eliminasi Gauss Jordan n n Metode ini merupakan pengembangan metode eliminasi Gauss, hanya saja augmented matrik, pada sebelah kiri diubah menjadi matrik diagonal Penyelesaian dari persamaan linier simultan diatas adalah nilai d 1, d 2, d 3, …, dn dan atau:

Contoh : n n n Selesaikan persamaan linier simultan: Augmented matrik dari persamaan linier simultan Lakukan operasi baris elementer Penyelesaian persamaan linier simultan : x 1 = 2 dan x 2 = 1

Contoh : B 2 -2 B 1 B 3 -3 B 1

Example 3 Using Elementary row Operations(2/4) ½ B 2 B 3 -3 B 2

Example 3 Using Elementary row Operations(3/4) -2 B 3 B 1 - B 2

Example 3 Using Elementary row Operations(4/4) B 2 + 7/2 B 3 B 1 - 11/2 B 3 n Solusi x = 1, y=2 dan z=3

Algoritma Metode Eliminasi Gauss-Jordan


Metode Iterasi Gauss. Seidel n n Metode interasi Gauss-Seidel adalah metode yang menggunakan proses iterasi hingga diperoleh nilai-nilai yang berubah. Bila diketahui persamaan linier simultan

Metode Iterasi Gauss. Seidel n n Berikan nilai awal dari setiap xi (i=1 s/d n) kemudian persamaan linier simultan diatas dituliskan menjadi:

Metode Iterasi Gauss. Seidel n n n Dengan menghitung nilai-nilai xi (i=1 s/d n) menggunakan persamaan-persamaan di atas secara terus-menerus hingga nilai untuk setiap xi (i=1 s/d n) sudah sama dengan nilai xi pada iterasi sebelumnya maka diperoleh penyelesaian dari persamaan linier simultan tersebut. Atau dengan kata lain proses iterasi dihentikan bila selisih nilai xi (i=1 s/d n) dengan nilai xi pada iterasi sebelumnya kurang dari nilai tolerasi error yang ditentukan. Untuk mengecek kekonvergenan

Catatan n n Hati-hati dalam menyusun sistem persamaan linier ketika menggunakan metode iterasi Gauss-Seidel ini. Perhatikan setiap koefisien dari masing-masing xi pada semua persamaan di diagonal utama (aii). Letakkan nilai-nilai terbesar dari koefisien untuk setiap xi pada diagonal utama. Masalah ini adalah ‘masalah pivoting’ yang harus benar-benar diperhatikan, karena penyusun yang salah akan menyebabkan iterasi menjadi divergen dan tidak diperoleh hasil yang benar.


Contoh n n Berikan nilai awal : x 1 = 0 dan x 2 = 0 Susun persamaan menjadi: (5, 1) (4, 3/2) (7/2, 7/4)

Contoh (13/4 , 15/8) (25/8 , 31/16) (49/16 , 63/32 ) (97/32 , 127/64)

Contoh : n n Selesaikan sistem persamaan berikut: Augmented matrik dari persamaan linier simultan tersebut :

Hasil Divergen

Hasil Konvergen

Algoritma Metode Iterasi Gauss-Seidel

Soal n n Selesaikan dg Eliminasi Gauss-Jordan x 1 + x 2 + 2 x 3 = 8 -x 1 – 2 x 1 + 3 x 3 = 1 3 x 1 – 7 x 2 + 4 x 3 = 10 x – y + 2 z – w = -1 2 x + y - 2 z -2 w = -2 -x + 2 y – 4 z + w = 1 3 x - 3 w = -3

n n n Selesaikan dg Gauss Seidel 5 x 1 + 2 x 2 + 6 x 3 = 0 -2 x 1 + x 2 + 3 x 3 = 0 X 1 – 2 x 2 + x 3 – 4 x 4 = 1 X 1 + 3 x 2 + 7 x 3 + 2 x 4 = 2 X 1 – 12 x 2 – 11 x 3 – 16 x 4 = 5

Contoh Penyelesaian Permasalahan Persamaan Linier Simultan n n Mr. X membuat 2 macam boneka A dan B. Boneka A memerlukan bahan 10 blok B 1 dan 2 blok B 2, sedangkan boneka B memerlukan bahan 5 blok B 1 dan 6 blok B 2. Berapa jumlah boneka yang dapat dihasilkan bila tersedia 80 blok bahan B 1 dan 36 blok bahan B 2. Model Sistem Persamaan Linier : Variabel yang dicari adalah jumlah boneka, anggap: x 1 adalah jumlah boneka A x 2 adalah jumlah boneka B Perhatikan dari pemakaian bahan : B 1: 10 bahan untuk boneka A + 5 bahan untuk boneka B = 80 B 2: 2 bahan untuk boneka A + 6 bahan untuk boneka B = 36 Diperoleh model sistem persamaan linier 10 x 1 + 5 x 2 = 80 2 x 1 + 6 x 2 = 36

Contoh 1 : n metode eliminasi Gauss-Jordan n Diperoleh x 1 = 6 dan x 2 = 4, artinya bahan yang tersedia dapat dibuat 6 boneka A dan 4 boneka B.

Contoh 2 : Penghalusan Kurva Dengan Fungsi Pendekatan Polinomial n Perhatikan bahwa pada ke-4 titik tersebut dihubungkan dengan garis lurus, sehingga tampak kasar. Untuk menghaluskannya dilakukan pendekatan garis dengan kurva yang dibentuk dengan fungsi pendekatan polinomial. Dari fungsi polinomial yang dihasilkan kurva dapat digambarkan dengan lebih halus. 3 4 2 1

Contoh 2 : n n n Misalkan pada contoh diatas, 4 titik yang ditunjuk adalah (2, 3), (7, 6), (8, 14) dan (12, 10). 4 titik ini dapat didekati dengan fungsi polinom pangkat 3 yaitu : Bila nilai x dan y dari 4 titik dimasukkan ke dalam persamaan di atas akan diperoleh model persamaan simultan sebagai berikut : Titik 1 3=8 a+4 b+2 c+d Titik 2 6 = 343 a + 49 b + 7 c + d Titik 3 14 = 512 a + 64 b + 8 c + d Titik 4 10 = 1728 a + 144 b + 12 c + d

n Dengan menggunakan Metode Eliminasi Gauss-Jordan a = -0, 303 b = 6, 39 c = -36, 59 d = 53, 04 y = -0, 303 x 3 + 6, 39 x 2 – 36, 59 x + 53, 04
Contoh soal persamaan simultan
Metode newton
Solve the simultaneous equations graphically
Persamaan linier simultan adalah
Metode regula falsi contoh soal
Persamaan diferensial simultan
How to solve non linear simultaneous equations
Hubungan simultan adalah
Persamaan simultan
Penerapan fungsi non linier dalam ekonomi
Contoh penerapan fungsi non linier dalam ekonomi
X+y=7 linear equation
Penyelesaian dari persamaan -2(x+6)=3(x+6) adalah ….
Penyelesaian pada persamaan 16m = 64 adalah
Himpunan penyelesaian dari persamaan trigonometri
Penyelesaian dari persamaan -2(x+6)=3(x+6) adalah
Persamaan lingkaran yang berpusat di
Trend non linear (kuadratis)
Contoh soal fungsi non linear
Analisis regresi non linear
Contoh forecasting
Kulde varme kontrast
Hvordan ser vi farger
Culorile binare de gradul 2
X.nnnx
Diketahui sistem persamaan linear dua variabel
Persamaan non linier
Contoh soal metode biseksi dan penyelesaiannya
Persamaan linear dua variabel adalah
Koefisien determinasi
Persamaan ketergantungan linier dan ketidakkonsistenan
Persamaan linear adalah
Persamaan regresi sederhana
Analisis korelasi berganda
Persamaan ketergantungan linier dan ketidakkonsistenan
X.nnnx
Bagi dua
Pohã ñana abortivo en paraguay
Hymenolepis nana diagram
Taenia solium
Japanese numbers quiz
Spirometra sparganum
Saturated salt solution flotation technique
Zola nana
Trophozoite stage
Smallest tapeworm infecting man
Nana mouskouri there's a place in my heart
Hymenolepis nana
Larva cisticercoide
Ichi ni san yon go roku nana hachi kyu jyu
Román nana
Hymenolepis nana morphologie
Nana mouskouri schubert
Pinus strobus nana
Hymenolepis nana
H nana ova
Texnologiyaning asosiy vazifalari
Nana mouskouri a place in my heart
Hymenolepis diminuta escolex
Japanese numbers 1-20
Nana mouskouri a place in my heart
Hepatic abscess mri
A thousand splendid suns how many chapters
Metagonimus yokogawai eggs
Himenolepiasis