Particle Spectra at AGS SPS and RHIC Dieter

  • Slides: 30
Download presentation
Particle Spectra at AGS, SPS and RHIC Dieter Röhrich Fysisk institutt, Universitetet i Bergen

Particle Spectra at AGS, SPS and RHIC Dieter Röhrich Fysisk institutt, Universitetet i Bergen • • Similarities and differences Rapidity distributions – – • • net protons produced particles Transverse mass spectra Hydrodynamics

Proton rapidity distribution • AGS energies – centrality dependence B. Back et al. ,

Proton rapidity distribution • AGS energies – centrality dependence B. Back et al. , E 917 Collaboration. Phys. Rev. Lett. 86 (2001) 1970

Proton rapidity distribution • AGS energies, central collisions - energy dependence B. Back et

Proton rapidity distribution • AGS energies, central collisions - energy dependence B. Back et al. , E 917 Collaboration. Phys. Rev. Lett. 86 (2001) 1970

Stopping • Rapidity shift - energy dependence F. Videbæk, nucl-ex/0106017

Stopping • Rapidity shift - energy dependence F. Videbæk, nucl-ex/0106017

Net proton rapidity distribution – centrality dependence • SPS, 158 Ge. V/nucl. , NA

Net proton rapidity distribution – centrality dependence • SPS, 158 Ge. V/nucl. , NA 49 • RHIC, s. NN= 130 Ge. V, STAR, BRAHMS N. Xu, QM 2001

Proton and antiproton rapidity distributions • SPS, 158 Ge. V/nucl. , NA 49

Proton and antiproton rapidity distributions • SPS, 158 Ge. V/nucl. , NA 49

Antiproton/proton ratio – rapidity distribution • SPS, 158 Ge. V/nucl. , NA 49 •

Antiproton/proton ratio – rapidity distribution • SPS, 158 Ge. V/nucl. , NA 49 • RHIC, s. NN= 130 Ge. V, BRAHMS

Antiproton/proton ratio – centrality dependence • SPS, 158 Ge. V/nucl. , NA 49 •

Antiproton/proton ratio – centrality dependence • SPS, 158 Ge. V/nucl. , NA 49 • RHIC, s. NN= 130 Ge. V, BRAHMS

Rapidity distributions • AGS, 10. 8 AGe. V N. Herrmann, J. P. Wessels and

Rapidity distributions • AGS, 10. 8 AGe. V N. Herrmann, J. P. Wessels and T. Wienold, Ann. Rev. Nucl. Part. Sci. 49 (1999) 581, and references therein + = K+ broader than Kp

Pion rapidity distribution • Comparison + and – SPS, central Pb+Pb, 158 Ge. V/nucl.

Pion rapidity distribution • Comparison + and – SPS, central Pb+Pb, 158 Ge. V/nucl. NA 49 Same widths for + and -

Kaon rapidity distribution • Comparison K+ and K– SPS, central Pb+Pb, 40 Ge. V/nucl.

Kaon rapidity distribution • Comparison K+ and K– SPS, central Pb+Pb, 40 Ge. V/nucl. NA 49 Different widths for K+ and K-

 -rapidity distribution • Comparison + and – SPS, central Pb+Pb, 158 Ge. V/nucl.

-rapidity distribution • Comparison + and – SPS, central Pb+Pb, 158 Ge. V/nucl. NA 49 A. Billmeier, Ph. D thesis, 2001; R. Barton, J. Phys. G 27 (2001) 367 - + Different widths for + and -

Rapidity distributions • Suddenly hadronizing QGP-fireball remaining internal longitudinal flow of colliding quarks J.

Rapidity distributions • Suddenly hadronizing QGP-fireball remaining internal longitudinal flow of colliding quarks J. Letessier, J. Rafelski, hep-ph/0106151 SPS NA 49 = 1. 22 K+ = 1. 25 ( K- = 1. 17) +

Transverse momentum spectra • Inv. CS X. -N. Wang, QM 01 Hard component: next

Transverse momentum spectra • Inv. CS X. -N. Wang, QM 01 Hard component: next session Soft component: 1/m. T d. N/dm. T (a. u. ) • Transverse mass spectra fit function: 1/m. Td. N/dm. T ~ exp(-m. T/T) fit range: : p. T ~. 3 – 1 Ge. V/c heavier hadrons: p. T 1. 5– 2 Ge. V/c

Transverse mass spectra • Comparison K+ and K– SPS, NA 44 Histograms: RQMD; fit:

Transverse mass spectra • Comparison K+ and K– SPS, NA 44 Histograms: RQMD; fit: 1/m. Td. N/dm. T ~ exp(-m. T/T)

Transverse mass spectra • Comparison + and – SPS, Pb+Pb, 158 Ge. V/nucl. ,

Transverse mass spectra • Comparison + and – SPS, Pb+Pb, 158 Ge. V/nucl. , different centralities WA 97 • Central Pb+Pb collisions, inverse slopes: - = 305 ± 25 Me. V, + = 287 ± 30 Me. V; • Similar spectra for particle/antiparticle

Transverse mass spectra • Comparison and RHIC, central Au+Au (14%) STAR No feed-down correction

Transverse mass spectra • Comparison and RHIC, central Au+Au (14%) STAR No feed-down correction e(-mt/T) (x 2) T=352+-7 Me. V • Identical slope parameters • Indication of deviations from single slope fit at low and high m. T

Centrality dependence of transverse mass spectra (1) • SPS, 158 Ge. V/nucl. , WA

Centrality dependence of transverse mass spectra (1) • SPS, 158 Ge. V/nucl. , WA 97: -+ + No dependence • RHIC, STAR: K-K+ No dependence STAR, submitted to Phys. Rev. Lett.

Centrality dependence of transverse mass spectra (2) J. W. Harris, QM 01 • RHIC,

Centrality dependence of transverse mass spectra (2) J. W. Harris, QM 01 • RHIC, Au+Au STAR: K- Slight dependence • RHIC, Au+Au STAR: p Strong dependence J. W. Harris, QM 01

Inverse slope parameter – p+p vs Pb+Pb NA 49; A. M. Rossi, Nucl. Phys.

Inverse slope parameter – p+p vs Pb+Pb NA 49; A. M. Rossi, Nucl. Phys. B 84 (1975) 269 • SPS, p+p • SPS, central Pb+Pb

Inverse slope parameter vs particle mass (1) • RHIC, central Au+Au STAR data: C.

Inverse slope parameter vs particle mass (1) • RHIC, central Au+Au STAR data: C. Roy, this conference K p

Inverse slope parameter vs particle mass (2) • Comparison RHIC (central Au+Au) and SPS

Inverse slope parameter vs particle mass (2) • Comparison RHIC (central Au+Au) and SPS (central Pb+Pb) STAR data: C. Roy, this conference K p d J/

Inverse slope parameter vs sqrt(s) • K -K + NA 49, STAR Central Au+Au(Pb+Pb)

Inverse slope parameter vs sqrt(s) • K -K + NA 49, STAR Central Au+Au(Pb+Pb) p+p Nucl. Phys. A 661(1999)506 Phys. Rev. Lett B 491(2000)59 Nucl. Phys. B 203(1982)27

Sudden breakup of QGP-fireball • Thermal freeze-out conditions = chemical freeze-out SPS, central Pb+Pb,

Sudden breakup of QGP-fireball • Thermal freeze-out conditions = chemical freeze-out SPS, central Pb+Pb, WA 97 data J. Rafelski, G. Torrieri, J. Letessier, hep-ph/0104132 Tfo, global 145 Me. V v 0. 52 c

Hydrodynamics motivated m. T fit (1) • SPS, central Pb+Pb; H. Appelshaeuser (NA 49),

Hydrodynamics motivated m. T fit (1) • SPS, central Pb+Pb; H. Appelshaeuser (NA 49), Eur. Phys. J. C 2 (1998) 661; B. Tomasik, U. Wiedemann, U. W. Heinz, nucl th/9907096 • Correlate - transverse mass spectrum and - - Bose. Einstein correlations • 2 contour plots for the fits of the single particle m. Tspectrum and of the Cartesian HBT radii Tfo 100 Me. V <v> 0. 55 c

Hydrodynamics motivated m. T fit (2) • RHIC, central Au+Au; STAR S. Margetis, Thermal.

Hydrodynamics motivated m. T fit (2) • RHIC, central Au+Au; STAR S. Margetis, Thermal. Fest, 2001; P. Jones, this conference Shape of the m. T spectrum depends on particle mass, m. Trange, flow profile: STAR Preliminary solid : used in fit and flow profile used: - 1/m. T d. N/dm. T (a. u. ) where r = s (r/R)0. 5 K- s p R m. T - m 0 [Ge. V/c 2] E. Schnedermann et al, PRC 48 (1993) 2462

Hydrodynamics motivated m. T fit (3) • RHIC, central Au+Au; STAR S. Margetis, Thermal.

Hydrodynamics motivated m. T fit (3) • RHIC, central Au+Au; STAR S. Margetis, Thermal. Fest, 2001; P. Jones, this conference 2 map (contour plot for 95. 5%CL) Tth = 0. 13 [Ge. V] < r > = 0. 52 [c] p K- Tth [Ge. V] At chi square minimum - 0 0. 4 < r > [c] 0 0. 4 Þ Strong radial flow at RHIC ßr (RHIC) = 0. 52 c Tfo (RHIC) = 0. 13 Ge. V

Hydrodynamics motivated m. T fit (4) • RHIC, central Au+Au, -K-p; PHENIX J. Buward-Hoy,

Hydrodynamics motivated m. T fit (4) • RHIC, central Au+Au, -K-p; PHENIX J. Buward-Hoy, Thermal. Fest, 2001 1/mt d. N/dmt = A f( ) d m. T K 1( m. T /Tfo cosh ) I 0( p. T /Tfo sinh ) PHENIX Preliminary where radius r = r/R, particle density distribution: f( ) 1 linear velocity profile: t( ) Tfo ~ 125 - 83 Me. V ~ 104 Me. V t ~ 0. 6 - 0. 8 ~ 0. 7 < t> ~ 0. 4 - 0. 6 ~ 0. 5

Hydro + Cascade model • SPS, RHIC, central Pb+Pb (Au+Au) D. Teaney, J. Lauret,

Hydro + Cascade model • SPS, RHIC, central Pb+Pb (Au+Au) D. Teaney, J. Lauret, E. V. Shuryak, nucl-th/0104041 • RHIC, central Au+Au; PHENIX J. Buward-Hoy, Thermal. Fest, 2001 • , K • Tfo ~ 135 Me. V • < t > ~ 0. 55 • nucleons • Tfo ~ 120 Me. V • < t > ~ 0. 6

Summary • Variety of shapes of rapidity distributions • Complex transverse mass spectra •

Summary • Variety of shapes of rapidity distributions • Complex transverse mass spectra • Hydrodynamics – Strong radial flow • t 0. 5 -0. 7 c – Sudden QGP break up model: • Tglobal 145 Me. V (SPS) – Hydro m. T-fits: • Tfo, thermal 100 -130 Me. V