Overview of SPM 2 From buttons to code
Overview of SPM 2 From buttons to code Eamonn Walsh & Domenica Bueti
SPM Statistical Parametric Mapping • SPM examines every voxel location across all images and computes a parametric map • Data reduction – condensing information from a number of individuals in a statistically meaningful way
Data transformations Image time-series Kernel Design matrix Realignment Smoothing General linear model Statistical parametric map (SPM) Statistical inference Normalisation Gaussian field theory p <0. 05 Template Parameter estimates
Spatial Preprocessing Model Specification and Parameter Estimation
Spatial Preprocessing
Spatial Preprocessing - Realign • Aligning hundreds of 3 D brain volumes per single subject • To create a ‘mean image’
Spatial Preprocessing - Coregister • Matching the functional scan to the structural scan for the same individual
Spatial Preprocessing – Slice Timing • Take first or middle slice as reference slice • Shift all other slices in time to match this reference slice
Spatial Preprocessing - Normalise • The same voxels in different brains are aligned to represent the same anatomical location. • Template
Spatial Preprocessing - Smooth • Blur the images prior to statistical analysis • FWHM Full width half maximum
Spatial Preprocessing - Segment • Images are segmented into grey and white matter maps
Image File fm 00223_004. img Realigned rfm 00223_004. img Realigned, Coregistered, , rrfm 00223_004. img Realigned, Coregistered, Normalised, wrrfm 00223_004. img Realigned, Coregistered, Normalised, Smoothed swrrfm 00223_004. img
Spatial Preprocessing
SPM Demo Spatial Preprocessing Guided Tour
- Slides: 16