OutlierPreserving FocusContext Visualization in Parallel Coordinates Matej Novotn

  • Slides: 37
Download presentation
Outlier-Preserving Focus+Context Visualization in Parallel Coordinates Matej Novotný Helwig Hauser Comenius University Bratislava, Slovakia

Outlier-Preserving Focus+Context Visualization in Parallel Coordinates Matej Novotný Helwig Hauser Comenius University Bratislava, Slovakia VRVis Research Center Vienna, Austria

Our goal § A parallel coordinates visualization that: § Employs Focus+Context § Handles outliers

Our goal § A parallel coordinates visualization that: § Employs Focus+Context § Handles outliers § Renders effectively 2 Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Overview § Motivation § Workflow § § § Benefits Bonus! Results and conclusions 3

Overview § Motivation § Workflow § § § Benefits Bonus! Results and conclusions 3 § Abstraction, Focus+Context § Outliers § Binning § Context Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Parallel Coordinates § § 4 Insight into multidimensional data Correlations, Groups, Outliers Matej Novotný

Parallel Coordinates § § 4 Insight into multidimensional data Correlations, Groups, Outliers Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Parallel Coordinates § § 5 Insight into multidimensional data Correlations, Groups, Outliers Matej Novotný

Parallel Coordinates § § 5 Insight into multidimensional data Correlations, Groups, Outliers Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Parallel Coordinates § § 6 Insight into multidimensional data Correlations, Groups, Outliers Matej Novotný

Parallel Coordinates § § 6 Insight into multidimensional data Correlations, Groups, Outliers Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Large data visualization § Large data cause clutter in visualization § 16. 000 records

Large data visualization § Large data cause clutter in visualization § 16. 000 records 7 Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Large data visualization § Transparency used to decrease clutter § 16. 000 records 8

Large data visualization § Transparency used to decrease clutter § 16. 000 records 8 Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Large data visualization § Transparency used to decrease clutter ? § 32. 000 records

Large data visualization § Transparency used to decrease clutter ? § 32. 000 records 9 Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Large data visualization § Transparency used to decrease clutter ? ? § 64. 000

Large data visualization § Transparency used to decrease clutter ? ? § 64. 000 records 10 Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Large data visualization § Transparency used to decrease clutter ? ? ? § 100.

Large data visualization § Transparency used to decrease clutter ? ? ? § 100. 000 records 11 Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Large data visualization § Transparency used to decrease clutter ? ? ? § Do

Large data visualization § Transparency used to decrease clutter ? ? ? § Do these records belong to the main trend? 12 Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Data abstraction § § 13 Density-based representation of data 16 bins Trends are clearly

Data abstraction § § 13 Density-based representation of data 16 bins Trends are clearly visible Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Related work § Hierarchical Parallel Coordinates (Fua et al. , 1999) § Visual representation

Related work § Hierarchical Parallel Coordinates (Fua et al. , 1999) § Visual representation of clusters § Smooth transparency § Cluster centers emphasized 14 Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Related work § Revealing Structure within Clustered Parallel Coordinates Displays (Johansson et al. ,

Related work § Revealing Structure within Clustered Parallel Coordinates Displays (Johansson et al. , 2005) § Textures, density § Transfer functions § Clusters § Outliers 15 Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Outliers § Different, sparse, rare § Why should we care? § Outliers can be

Outliers § Different, sparse, rare § Why should we care? § Outliers can be considered in: 16 § Investigation (special cases in simulations…) § Security (network intrusion, suspicious activity…) § Detect errors in data acquisition § Data space § Screen space Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Outliers are like kids. If you leave them unattended they either get lost or

Outliers are like kids. If you leave them unattended they either get lost or they break stuff. 17 Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Outliers § Avoid losing them in visualization § Improve data abstraction or F+C 18

Outliers § Avoid losing them in visualization § Improve data abstraction or F+C 18 § e. g. due to transparency or abstraction § e. g. remove outliers from clustering Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Workflow 19 Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Workflow 19 Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Workflow 20 Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Workflow 20 Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Step 1: Binning § 2 D binning § Density-based rep. § Screen-oriented § Low

Step 1: Binning § 2 D binning § Density-based rep. § Screen-oriented § Low memory demands compared to n. D § Every segment separately § Result = bin map 21 Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Benefits of binning? § § § Operations no longer depend on the size of

Benefits of binning? § § § Operations no longer depend on the size of the input Information is preserved Variable precision of binning § Variable precision of § § 22 visual output Fine binning does not destroy details Larger bins can be produced from finer bins Matej Novotný http: //www. VRVis. at/ 128 x 128 bins Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Step 2: Outlier detection § Various criteria can be employed § e. g. isolated

Step 2: Outlier detection § Various criteria can be employed § e. g. isolated bins, median filter … 64 x 64 bin map 23 Matej Novotný http: //www. VRVis. at/ 32 x 32 bin map median filter 32 x 32 bin map isolated bins Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Step 3: Generating Context § § Outliers → opaque lines Binned trends → quads

Step 3: Generating Context § § Outliers → opaque lines Binned trends → quads § Population mapped to color intensity § No blending § Low visual complexity § Rendering order according to population 24 Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates 8 bins

Step 4: Add Focus 8 bins 25 Matej Novotný http: //www. VRVis. at/ Outlier-Preserving

Step 4: Add Focus 8 bins 25 Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Benefits § Operations performed on bin maps § Outliers handled separately § Output-sensitive implementation

Benefits § Operations performed on bin maps § Outliers handled separately § Output-sensitive implementation 26 § Reduced complexity § Results coherent with visual output § More operations feasible – e. g. Clustering § Increased information value § Clearer context § View divided into layers and segments Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Results § Large data can be rendered and explored § 3 millions records, 16

Results § Large data can be rendered and explored § 3 millions records, 16 dimensions, 32 bins 27 § Binned in 30 sec, rendered instantly (3 Ghz, 64 bit) Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

BONUS! Clustering 28 Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel

BONUS! Clustering 28 Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Clustering, step 0 § Apply Gaussian to smooth out the bin map § Segmentation

Clustering, step 0 § Apply Gaussian to smooth out the bin map § Segmentation data, Green vs Darkness 29 Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Clustering, further steps § § Start with the highest population Decrease the population threshold

Clustering, further steps § § Start with the highest population Decrease the population threshold § Old clusters grow § New clusters emerge 50% 30 Matej Novotný http: //www. VRVis. at/ 20% 10% Outlier-Preserving Focus+Context Visualization in Parallel Coordinates 0%

Clustering results R 31 Matej Novotný http: //www. VRVis. at/ B G Outlier-Preserving Focus+Context

Clustering results R 31 Matej Novotný http: //www. VRVis. at/ B G Outlier-Preserving Focus+Context Visualization in Parallel Coordinates D S H

Clustering results R 32 Matej Novotný http: //www. VRVis. at/ B G Outlier-Preserving Focus+Context

Clustering results R 32 Matej Novotný http: //www. VRVis. at/ B G Outlier-Preserving Focus+Context Visualization in Parallel Coordinates D S H

Clustering results R 33 Matej Novotný http: //www. VRVis. at/ B G Outlier-Preserving Focus+Context

Clustering results R 33 Matej Novotný http: //www. VRVis. at/ B G Outlier-Preserving Focus+Context Visualization in Parallel Coordinates D S H

Clustering results R 34 Matej Novotný http: //www. VRVis. at/ B G Outlier-Preserving Focus+Context

Clustering results R 34 Matej Novotný http: //www. VRVis. at/ B G Outlier-Preserving Focus+Context Visualization in Parallel Coordinates D S H

Conclusions § Data abstraction based on density rep. § Focus+Context § § § Much

Conclusions § Data abstraction based on density rep. § Focus+Context § § § Much clearer view for large data Screen-oriented and output-sensitive Interactive visualization of large data 35 § Data operations - outlier detection, clustering § Variable context precision § Outliers preserved Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Acknowledgements § § § § 36 K-Plus Vega grant 1/3083/06. AVL List Gmb. H

Acknowledgements § § § § 36 K-Plus Vega grant 1/3083/06. AVL List Gmb. H - data Juergen Platzer Prof. Peter Filzmoser Harald Piringer Michael Wohlfahrt Matej Novotný http: //www. VRVis. at/ Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Thank you for your attention!

Thank you for your attention!