Other Circuit Components SPH 4 C Equivalent Resistance

  • Slides: 20
Download presentation
Other Circuit Components SPH 4 C

Other Circuit Components SPH 4 C

Equivalent Resistance: More Practice

Equivalent Resistance: More Practice

Equivalent Resistance: More Practice

Equivalent Resistance: More Practice

Equivalent Resistance: More Practice

Equivalent Resistance: More Practice

Equivalent Resistance: More Practice

Equivalent Resistance: More Practice

Semiconductors Semi-conducting materials exhibit both conducting and insulating properties. The way in which the

Semiconductors Semi-conducting materials exhibit both conducting and insulating properties. The way in which the material is connected to a power supply determines whether it will conduct an electrical current or impede it from flowing.

Semiconductors The most common semi-conducting material is silicon, which needs to have very small

Semiconductors The most common semi-conducting material is silicon, which needs to have very small amounts of other elements such as boron and phosphorous added to it in order to become a semi-conductor. This is called doping.

Diodes The simplest kind of semiconductor device is a diode, in which the electrical

Diodes The simplest kind of semiconductor device is a diode, in which the electrical current can be made to flow in one direction only. If the diode is reversed the flow of current is prevented.

Bias The direction that current is allowed to pass is called the forward bias.

Bias The direction that current is allowed to pass is called the forward bias. The direction that current is not allowed to pass is called the reverse bias.

Rectifier Circuits A common use for diodes is in rectifier circuits, which changes alternating

Rectifier Circuits A common use for diodes is in rectifier circuits, which changes alternating current (AC) into direct current (DC), as in a cell phone charger.

LEDs and ILEDs A light-emitting diode or LED is a special kind of diode,

LEDs and ILEDs A light-emitting diode or LED is a special kind of diode, made from gallium arsenide phosphide, that glows when current passes through it (an ILED emits infrared light). The current required to power an LED is usually low.

Photodiodes Light incident on a photodiode generates an electrical current (in photovoltaic mode). Photodiodes

Photodiodes Light incident on a photodiode generates an electrical current (in photovoltaic mode). Photodiodes are the basis of solar cells.

Transistors have three leads: the emitter, collector and base. A small current at the

Transistors have three leads: the emitter, collector and base. A small current at the base terminal (that is, flowing from the base to the emitter) can control or switch a much larger current between the collector and emitter terminals.

Transistors are commonly used as electronic switches, both for high-power applications such as power

Transistors are commonly used as electronic switches, both for high-power applications such as power supplies and for low-power applications such as logic gates.

Transistors The transistor is the key component in practically all modern electronics, and is

Transistors The transistor is the key component in practically all modern electronics, and is considered by many to be one of the greatest inventions of the 20 th century.

Capacitors A capacitor is a discrete component which can store an electrical charge for

Capacitors A capacitor is a discrete component which can store an electrical charge for a period of time. The larger the capacitance the more charge it can store.

Capacitors When you connect a capacitor to a battery, here’s what happens: n The

Capacitors When you connect a capacitor to a battery, here’s what happens: n The plate on the capacitor that attaches to the negative terminal of the battery accepts electrons that the battery is producing. n The plate on the capacitor that attaches to the positive terminal of the battery loses electrons to the battery. Once it's charged, the capacitor has the same voltage as the battery (1. 5 V on the battery means 1. 5 V on the capacitor).

Capacitors Here you have a battery, a light bulb and a capacitor. When you

Capacitors Here you have a battery, a light bulb and a capacitor. When you closed the switch to connect the battery, the light bulb would light up as current flows from the battery to the capacitor to charge it up. The bulb would get dimmer and finally go out once the capacitor reached its capacity.

Capacitors Then you could change the switch position. Current would flow from one plate

Capacitors Then you could change the switch position. Current would flow from one plate of the capacitor to the other. The light bulb would light and then get dimmer and dimmer, finally going out once the capacitor had completely discharged (the same number of electrons on both plates). The difference between a capacitor and a battery is that a capacitor can dump its entire charge in a tiny fraction of a second. The electronic flash on a camera uses a capacitor

More Practice Building an LED Conductivity Tester

More Practice Building an LED Conductivity Tester