Optimal DesignLayout of Steam and Gas Turbine Combined
Optimal Design/Layout of Steam and Gas Turbine Combined Cycles P M V Subbarao Professor Mechanical Engineering Department Minimization of Heat Rejection Temperatures….
Gas Turbine Exit Gas Temperature : Source for Bottoming Cycle FUEL GAS INLET AIR INLET TURBINE COMP CC G
Performance of Topping Cycle • Cost to benefit ratio of topping Cycle • Temperature of Turbine Exhaust Gas, T 5 G
Effect of Pressure Ratio : Topping Cycle
Schematic Diagram of a Simple HRSG Effectiveness of HRSG Total Thermal power available with Turbine exhaust: Thermal power transferred to Bottoming Cycle:
Layout of Simple Bottoming (Rankine) Cycle
Schematic Diagram of a Simple HRSG Thermal power transferred to Bottoming Cycle:
Anatomy of Temperature vs Heat Exchange Diagram T 4 G TG, PP T 5 G TTD S GA FLUE R TE EA R PE Pinch Point R SE I OM ON EC Tfw Design constraint: Design termination: SU EVAPORATOR H TSH
The Pinch Point & Unavailable Enthalpy
Performance of Combined Cycle • Cost to benefit ratio of combines Cycle • Temperature of Stack Exhaust Gas, T 4 G
Effect of Pressure Ratio : Combined Cycle
Simple Brayton Vs Combine Cycle
Techno-Economics of Pinch Point Re lat ive Ca pi tal cos t of Bo HR tto mi SG ng Cy cle Po we r
Effect of Bottoming Cycle Parameters : Live Steam Pressure
Effect of Bottoming Cycle Parameters : Live Steam Pressure e am Ste bin r u T put t u O nt nte o C e stur Moi HRSG Effectiveness
Effect of Bottoming Cycle Parameters : Live Steam Temperature Steam Turbine Output Mo ist ur e. C on ten t HRS G Ef fecti vene ss
Design of HRSG
- Slides: 17