Open Polar Server OPS Geospatial database web interface

Open Polar Server OPS: Geospatial database, web interface, map server running on virtual box. Deployable using Vagrant-Up software. All open source.

Open Polar Server OPS: Geospatial database, web interface, map server running on virtual box. Deployable using Vagrant-Up software. All open source.

Open Polar Server

Open Polar Server https: \ops. cresis. ku. edu

Cross Over Analysis ftp: //data. cresis. ku. edu/data/rds/crossovers/

Coverage Map ftp: //data. cresis. ku. edu/data/rds/coverage_maps/ For the actual data all in one directory: ftp: //data. cresis. ku. edu/data/rds/csv_good/

Data Processing Plans Top Priority Ingest of all data into the database Reformat of all data (raw and metadata) All data to NSIDC in new format Quality control of all datasets RDS System delay correction * Radiometric correction * Use of auxiliary datasets for picking (e. g. mass conservation, clutter simulation, gravity)? Tomography (Xiaoqing Wu) Internal layer processing FMCW Radar Deconvolution to reduce sidelobes * Coherent noise removal Accumulation Radar Melt rate

New Data Archive Format L 1 B: Used Net. CDF format. Global attributes, field names match UT Net. CDF format Fields are identical to Matlab format except for name changes to match UT’s Net. CDF format. % mat = netcdf_to_mat(cdf_fn, [], '^settings(1). wfs([0 -9]*). ') L 2: CSV “ASCII” file format. Same as before, but with a more descriptive header. # The MCo. RDS L 2 Ice Thickness data set contains measurements for Elevation, Surface, Bottom and Thickness. # Format is 9 columns separated by commas. Columns are: # # LAT Latitude Degrees North, Antenna position on the aircraft w. r. t WGS-84 and ITRF 2008 from postprocessed GPS data. # LON Longitude Degrees East, Antenna position on the aircraft w. r. t WGS-84 and ITRF 2008 from postprocessed GPS data. # TIME UTC Time Seconds of day. Note: When aligning with GPS time tagged data, account for leap seconds. # Note: time tages can be obtained by using the YYYY MM DD fields from the FRAME and adding TIME. # THICK Ice Thickness: Bottom minus Surface. Constant dielectric of 3. 15 (no firn) is assumed for converting propagation delay into range. -9999 indicates no thickness available. Meters # ELEVATION Elevation of GPS antenna referenced to WGS-84 Ellipsoid and ITRF 2008. Meters # FRAME (YYYYMMDDSSFFF) Fixed length numeric field. YYYY = year, MM = month, DD = day, SS = segment FFF = frame. # SURFACE Range to Ice Surface. Actual surface height is Elevation minus this number. Meters # BOTTOM Range to Ice Bottom. Actual ice bottom height is Elevation minus this number. Constant dielectric of 3. 15 (no firn) is assumed for converting propagation delay into range. -9999 indicates no thickness available. Meters # QUALITY 1: High confidence pick # 2: Medium confidence pick # 3: Low confidence pick # # LAT, LON, TIME, THICK, ELEVATION, FRAME, SURFACE, BOTTOM, QUALITY 78. 885300, -66. 279292, 60122. 1966, 171. 14, 5675. 7365, 2013032602001, 5142. 41, 5313. 55, 1

Net. CDF Loader cdf_fn = 'IRMCR 1 B_V 01_20130408_01_020. nc'; cdf_fn = 'IRSNO 1 B_V 01_20130323_02_098. nc'; mdata = netcdf_to_mat(cdf_fn); mdata. Latitude = mdata. lat; mdata = rmfield(mdata, 'lat'); mdata. Longitude = mdata. lon; mdata = rmfield(mdata, 'lon'); mdata. Elevation = mdata. alt; mdata = rmfield(mdata, 'alt'); mdata. Data = mdata. amplitude; mdata = rmfield(mdata, 'amplitude'); mdata. GPS_time = mdata. time; mdata = rmfield(mdata, 'GPS_time'); mdata. Time = mdata. fasttime; mdata = rmfield(mdata, 'fasttime'); mdata = uncompress_echogram(mdata);

Basler and Ground Work

Basler and Ground Work

200 -450 MHz RDS: Layering

200 -450 MHz RDS: Sounding

200 -450 MHz RDS Multibeam
- Slides: 14