OC curve for the single sampling plan N

  • Slides: 27
Download presentation
OC curve for the single sampling plan N = 3000, n=89, c= 2 1

OC curve for the single sampling plan N = 3000, n=89, c= 2 1

Probabilities of Acceptance for the Single Sampling Plan n = 89, c = 2

Probabilities of Acceptance for the Single Sampling Plan n = 89, c = 2 Assumed Process Quality Sample size, np 0 n Probability of acceptance, Pa Percent of Lots Accepted 100 Pa P 0 100 P 0 0. 01 1. 0 89 0. 938 93. 8 0. 02 2. 0 89 1. 8 0. 731 73. 1 0. 03 3. 0 89 2. 7 0. 494 49. 4 0. 04 4. 0 89 3. 6 0. 302 30. 2 0. 05 5. 0 89 4. 5 0. 174 17. 4 0. 06 6. 0 89 5. 3 0. 106 10. 6 0. 07 7. 0 89 6. 2 0. 055 5. 5 2

Double Sampling Plan Inspect a sample of 150 from lot of 2400 If 1

Double Sampling Plan Inspect a sample of 150 from lot of 2400 If 1 or less Nonconforming units accept lots and stop If 5 or less Nonconforming units On both samples, Accept the lot If 2 or 3 nonconforming units, inspect a second sample of 200 If 4 or more Nonconforming units the lot is not accepted and stop If 6 or more Nonconforming units On both samples The lot is not accepted Graphical description of the double sampling plan: N=2400, n 1=150, c 1=1, r 1=4, n 2=200, c 2=5, and r 2=6 3

OCC for Double Sampling Plan 4

OCC for Double Sampling Plan 4

OCC for a Multiple Sampling Plan 5

OCC for a Multiple Sampling Plan 5

Type-A and Type-B OC curves: 6

Type-A and Type-B OC curves: 6

Effect of n and c on OC curves: 7

Effect of n and c on OC curves: 7

Other Aspects of OC Curve Behavior 8

Other Aspects of OC Curve Behavior 8

Average Outgoing Quality (AOQ) A common procedure, when sampling and testing is non-destructive, is

Average Outgoing Quality (AOQ) A common procedure, when sampling and testing is non-destructive, is to 100% inspect rejected lots and replace all defectives with good units. In this case, all rejected lots are made perfect and the only defects left are those in lots that were accepted. 9

Average Outgoing Quality The Average Outgoing Quality (AOQ) is the average of rejected lots

Average Outgoing Quality The Average Outgoing Quality (AOQ) is the average of rejected lots (100% inspection) and accepted lots ( a sample of items inspected) Note that as the lot size N becomes large relative to the sample size n, AOQ ≈ Pacp 10

Average Quality of Inspected Lots Typically the term (N-n)/N is very close to 1;

Average Quality of Inspected Lots Typically the term (N-n)/N is very close to 1; therefore, the equation most often used is: 11

Example If N = 10, 000, n = 89, and c = 2, and

Example If N = 10, 000, n = 89, and c = 2, and that the incoming lots are of quality p = 0. 01. What is AOQ? AOQ = Pacp(N-n)/N =? 12

Average Outgoing Quality (AOQ) for the Single Sampling Plan n = 89, c =

Average Outgoing Quality (AOQ) for the Single Sampling Plan n = 89, c = 2 Assumed Process Quality Sample size, np 0 n Probability of acceptance, Pa AOQ 100 Pacp 93. 8 P 0 100 P 0 0. 01 1. 0 89 0. 938 0. 02 2. 0 89 1. 8 ? 0. 03 3. 0 89 2. 7 0. 494 0. 04 4. 0 89 3. 6 ? 0. 05 5. 0 89 4. 5 ? 0. 06 6. 0 89 5. 3 0. 106 0. 636 0. 07 7. 0 89 6. 2 0. 055 0. 385 1. 482 13

AOQ and Acceptance Sampling 15 lots 2% nonconforming Producer N=3000 n=89 c=2 11 lots

AOQ and Acceptance Sampling 15 lots 2% nonconforming Producer N=3000 n=89 c=2 11 lots 2% nonconforming Consumer 4 lots 2% nonconforming 4 lots 0% nonconforming Figure 9 -15 How acceptance Sampling works 14

AOQ and Acceptance Sampling Total Number 11 lots- Number Nonconforming 11(3000)=33, 000(0. 02)=660 4(3000)(0.

AOQ and Acceptance Sampling Total Number 11 lots- Number Nonconforming 11(3000)=33, 000(0. 02)=660 4(3000)(0. 98)=11, 7 60 0% Nonconforming 0 44, 760 660 2% Nonconforming 4 lots- Percent Nonconforming (AOQ) = 660/44, 760 X 100 =1. 47% Figure 9 -15 cont’d.

Average Outgoing Quality curve for the sampling plan N = 3000, n = 89,

Average Outgoing Quality curve for the sampling plan N = 3000, n = 89, and c = 2

Average Outgoing Quality Level A plot of the AOQ (Y-axis) versus the incoming lot

Average Outgoing Quality Level A plot of the AOQ (Y-axis) versus the incoming lot p (X-axis) will start at 0 for p = 0, and return to 0 for p = 1 (where every lot is 100% inspected and rectified). In between, it will rise to a maximum. This maximum, which is the worst possible long term AOQ, is called the Average Outgoing Quality Level AOQL. 17

Average Total Inspection (ATI) When rejected lots are 100% inspected, it is easy to

Average Total Inspection (ATI) When rejected lots are 100% inspected, it is easy to calculate the ATI if lots come consistently with a defect level of p. For a LASP (n, c) with a probability pa of accepting a lot with defect level p, we have: ATI = n + (1 - pa) (N - n) where N is the lot size. 18

Example If a lot size N = 10, 000, and sample size n =

Example If a lot size N = 10, 000, and sample size n = 89, number of acceptance c = 2, find ATI at p = 0. 01 19

20

20

Average Sample Number (ASN) For a single sampling (n, c) we know each and

Average Sample Number (ASN) For a single sampling (n, c) we know each and every lot has a sample of size n taken and inspected or tested. For double, multiple and sequential plans, the amount of sampling varies depending on the number of defects observed. 21

Average Sample Number (ASN) For any given double, multiple or sequential plan, a long

Average Sample Number (ASN) For any given double, multiple or sequential plan, a long term ASN can be calculated assuming all lots come in with a defect level of p. A plot of the ASN, versus the incoming defect level p, describes the sampling efficiency of a given plan scheme. ASN = n 1 + n 2 (1 – P 1) for a double sampling plan. 22

Sampling Plan Design Suppose α is known and the AQL is also known then

Sampling Plan Design Suppose α is known and the AQL is also known then : q Sampling plan with stipulated producer’s risk q Sampling plan with stipulated consumer’s risk q Sampling plan with stipulated producer’s and consumer’s risk can be designed. 23

Sampling Plan Design q. Stipulated Producer’s Risk q α = 0. 05 q Pa=0.

Sampling Plan Design q. Stipulated Producer’s Risk q α = 0. 05 q Pa=0. 95 AQL = 1. 2% P 0. 95= 0. 012 q. Assume values for C, find np 0. 95 for this c value, calculate n 24

Sampling Plan Design q. Stipulated Consumer’s Risk q β = 0. 10 q Pa=0.

Sampling Plan Design q. Stipulated Consumer’s Risk q β = 0. 10 q Pa=0. 10 LQ = 6. 0% P 0. 10= 0. 060 q. Assume values for C, find np 0. 95 for this c value, calculate n 25

Sampling Plan Design q. Stipulated Producer’s and Consumer’s risk q α = 0. 10

Sampling Plan Design q. Stipulated Producer’s and Consumer’s risk q α = 0. 10 q AQL=0. 9 β = 0. 10 LQ= 7. 8 q. Find the ratio of P 0. 10/P 0. 95. From table 9 -4 C is between 1 and 2. Find n for c =1 and n for c =2. 26

Sampling Plan Design q. Have 4 plans. q. Select plan based on: q Lowest

Sampling Plan Design q. Have 4 plans. q. Select plan based on: q Lowest sampling size q Greatest sampling size q Plan exactly meets consumer’s stipulation and is as close as possible to producer’s stipulation q Plan exactly meets producer’s stipulation and is as close as possible to consumer’s stipulation 27