Nuclear Reactions at Low Energies Matej Lipoglavek Joef

  • Slides: 32
Download presentation
Nuclear Reactions at Low Energies Matej Lipoglavšek Jožef Stefan Institute, Ljubljana, Slovenia Russbach, March

Nuclear Reactions at Low Energies Matej Lipoglavšek Jožef Stefan Institute, Ljubljana, Slovenia Russbach, March 2019

BBN reaction network 7 Be 1 2 1 1 3 He 7 Li 9

BBN reaction network 7 Be 1 2 1 1 3 He 7 Li 9 4 He 8 4 5 1 H 1 1 n 2 2 d 7 6 3 1 0 3 t Reactions important for the production of the lightest elements (B. D. Fields, Annual Reviews of Nuclear and Particle Science 61, 2011)

Reaction cross section C. M. S. Energy [Me. V] A. Coc, E. Vangioni Int.

Reaction cross section C. M. S. Energy [Me. V] A. Coc, E. Vangioni Int. J. Mod. Phys. E 26, 1741002 (2017)

Measurements @ JSI 2 MV Tandem van de Graaf accelerator

Measurements @ JSI 2 MV Tandem van de Graaf accelerator

Implanted deuterium targets Deuterium implanted into graphite or titanium at 3. 5 k. V

Implanted deuterium targets Deuterium implanted into graphite or titanium at 3. 5 k. V resulting in about 10 at. % deuterium concentration. Proton beam energy between 260 and 300 ke. V from the 2 MV Tandetron accelerator.

Cross section results Differential cross section at θ = 135˚ y r a n

Cross section results Differential cross section at θ = 135˚ y r a n i P r m i l e

Angular Distribution L. Marcucci et al. , PRL 116, 102501 (2016)

Angular Distribution L. Marcucci et al. , PRL 116, 102501 (2016)

S-factor Sommerfeld parameter:

S-factor Sommerfeld parameter:

Electron detection Detecting electrons with ΔE – E technique beam current Ge detector graphite

Electron detection Detecting electrons with ΔE – E technique beam current Ge detector graphite target beam Si detector Cs. I detector

Bi-207 source

Bi-207 source

Electrons 2 H(p, γ)3 He 2 H(p, e-)3 He

Electrons 2 H(p, γ)3 He 2 H(p, e-)3 He

Results Beam energy at half target thickness: 243 ke. V Cross section: 2 H(p,

Results Beam energy at half target thickness: 243 ke. V Cross section: 2 H(p, γ)3 He, σ=1. 0(2) μb 2 H(p, e-)3 He, σ=0. 3(1) nb Our We can only say that in at least 7% of the screened reactions an electron is emitted instead of a γ ray.

Catalysis of nuclear reactions by muons Instead of 2 H(p, γ)3 He Alvarez measured

Catalysis of nuclear reactions by muons Instead of 2 H(p, γ)3 He Alvarez measured 2 H(p, μ)3 He

Electron Screening where Ue is the screeening potential. electron cloud Ec Ue=Z 1 Z

Electron Screening where Ue is the screeening potential. electron cloud Ec Ue=Z 1 Z 2 e 2/4 pe 0 Ra Potential V(r) Cross section increases at low energies when the interacting nuclei are not bare. Enhancement factor E + Ue = Eeff 0 Rn nuclear radius Ra Bohr radius r H. J. Assenbaum, K. Langanke and C. Rolfs, Z. Phys. A 327 (1987) 461. 305 citations (Web of Science, March 2016).

Previous Results 1 for d(d, p)t reaction from F. Raiola et al. , Eur.

Previous Results 1 for d(d, p)t reaction from F. Raiola et al. , Eur. Phys. J. A 19 (2004) 283.

Previous Results 2 J. Kasagi, Prog. Theo. Phys. Suppl. 154 (2004) 365. for the

Previous Results 2 J. Kasagi, Prog. Theo. Phys. Suppl. 154 (2004) 365. for the d(d, p)t reaction Ue=310± 30 e. V @ 7% H/Pd => concentration dependence

Previous Results 3 for d(d, p)t reaction from K. Czerski et al. , J.

Previous Results 3 for d(d, p)t reaction from K. Czerski et al. , J. Phys. G 35 (2008) 014012. for zirconium metal Ue=319± 3 e. V

Previous Results 4 J. Cruz et al. , Phys. Lett. B 624 (2005) 181;

Previous Results 4 J. Cruz et al. , Phys. Lett. B 624 (2005) 181; J. Phys. G 35 (2008) 014004. Pd. Li 1%: Ue= 3. 7 ± 0. 3 ke. V Li metal: Ue= 1. 18 ± 0. 06 ke. V -77 e. V Li 2 WO 4: Ue= 237+133 S(E)=0. 055+0. 21 E-0. 31 E 2[Me. V b]

Previous Results 5 L. Lamia et al. , Astron. Astrophys. 541, A 158 (2012).

Previous Results 5 L. Lamia et al. , Astron. Astrophys. 541, A 158 (2012). Trojan horse method → bare S factor S(E)=0. 053+0. 213 E-0. 336 E 2[Me. V b] 7 Li(p, α)4 He reaction Ue= 425 ± 60 e. V in Li metal Adiabatic limit: Ue= 240 e. V

Measurements @ JSI X-ray detector beam current target beam Pb absorber neutron detector Ge

Measurements @ JSI X-ray detector beam current target beam Pb absorber neutron detector Ge detector

Comparison to previous results Target Stoichiometry 7 Li+p d+d Ni 0. 04 0. 13

Comparison to previous results Target Stoichiometry 7 Li+p d+d Ni 0. 04 0. 13 Zn 0. 68 0. 13 Pd 0. 296 0. 03 Pt 0. 24 0. 06 Reaction Ue [ke. V] Target 7 Li+p p+7 Li d+d F. Raiola et al. , Eur. Phys. J. A 19 (2004) 283. Ni 4. 1 ± 1. 0 0. 38 ± 0. 04 p+7 Li J. Cruz et al. , Phys. Lett. B 624 (2005) 181. Zn 2. 4 ± 1. 0 0. 48 ± 0. 05 7 Li+p J. Vesic et al. , Eur. Phys. J. A 50 (2014) 153. Pd 2. 3 ± 0. 5 3. 7 ± 0. 3 0. 80 ± 0. 09 Pt 2. 8 ± 1. 3 0. 67 ± 0. 05

Thick targets 1 H(7 Li, α)4 He Target Ue [ke. V] Stoichiometry Graphite 10.

Thick targets 1 H(7 Li, α)4 He Target Ue [ke. V] Stoichiometry Graphite 10. 3 ± 0. 4 0. 059± 0. 003 Pd 3. 6 ± 0. 7 0. 21± 0. 01 Ti. H 3. 9 ± 0. 4 1. 03± 0. 04 W 5. 9 ± 0. 9 0. 042± 0. 003 Adiabatic limit: Ue= 0. 24 ke. V

Thin targets and resonances Breit Wigner resonance cross section Infinitely thick target yield of

Thin targets and resonances Breit Wigner resonance cross section Infinitely thick target yield of narrow resonance Integral over the resonance C. Iliadis, Nuclear Physics of Stars, Wiley-VCH, Weinheim, (2007) p. 341.

The 19 F(p, αγ)16 O reaction K. Spyrou et al. , Z. Phys. A

The 19 F(p, αγ)16 O reaction K. Spyrou et al. , Z. Phys. A 357 (1997) 283; Eur. Phys. J. A 7 (2000) 79.

Fluorine results A. Cvetinović, Ph. D Thesis, University of Ljubljana (2015).

Fluorine results A. Cvetinović, Ph. D Thesis, University of Ljubljana (2015).

The 11 B(p, αα)4 He reaction H. W. Becker et al. , Z. Phys.

The 11 B(p, αα)4 He reaction H. W. Becker et al. , Z. Phys. , A 327, 341 (1987).

Results Target Reaction Ue [ke. V] 7 Li+p 11 B+p 19 F+p adiabatic 0.

Results Target Reaction Ue [ke. V] 7 Li+p 11 B+p 19 F+p adiabatic 0. 24 0. 68 2. 19 Graphite 10. 3 ± 0. 4 32 ± 4 115 ± 8 Pd 3. 6 ± 0. 7 8. 0 ± 1. 9 63 ± 6 Ti. H 3. 9 ± 0. 4 6. 7 ± 1. 8 62 ± 6 W 5. 9 ± 0. 9 - 75 ± 15 Graphite/ adiabatic 42. 9 ± 1. 7 47. 1 ± 5. 9 52. 5 ± 3. 6 A. Cvetinović, Phys. Rev. C 92 (2015) 065801.

Crystal symmetry small screening large screening fcc (Pd) Hexagonal Graphite

Crystal symmetry small screening large screening fcc (Pd) Hexagonal Graphite

Hydrogen molecular ion

Hydrogen molecular ion

Hydrogen molecular ion

Hydrogen molecular ion

Measurement setup In addition to 2 H(p, γ)3 He we looked for electrons from

Measurement setup In addition to 2 H(p, γ)3 He we looked for electrons from the 2 H(p, e-)3 He reaction Proton beam energy: 260 ke. V, intensity: 7 μA, 8 days Target: graphite implanted with deuterium at 3 ke. V once a day for ½ hour at 0. 8 m. A resulted in 8 at. % of deuterium per carbon atom down to a depth of about 270 nm Cs. I-Si timestamped Expectations:

Conclusions • During the electron screening process the electrons come close to the nucleus.

Conclusions • During the electron screening process the electrons come close to the nucleus. • A substantial number of fusion reactions in the Sun proceeds with electron emission. • Electron screening could help in lithium abundance problem. • Different screening potentials are due to different proportions of target nuclei on active and inactive sites. • For stellar plasma we really need to understand what happens in the laboratory experiments.