Nuclear Physics Institute Academy of Sciences of Czech

  • Slides: 16
Download presentation
 • Nuclear Physics Institute, Academy of Sciences of Czech Republic • Department of

• Nuclear Physics Institute, Academy of Sciences of Czech Republic • Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague Neutron production in Pb/U assembly irradiated by deuterons at 1. 6 and 2. 52 Ge. V Ondřej Svoboda

Outline - Energy plus Transmutation project - Deuteron experiments - MCNPX simulations - Experiment

Outline - Energy plus Transmutation project - Deuteron experiments - MCNPX simulations - Experiment Simulation - Conclusion • • • Energy plus Transmutation project Deuteron experiments MCNPX simulations Experiment Simulation Conclusion

Energy plus Transmutation - Introduction - Energy plus Transmutation project • Introduction • setup

Energy plus Transmutation - Introduction - Energy plus Transmutation project • Introduction • setup - Deuteron experiments - MCNPX simulations - Experiment Simulation - Conclusion • Main aim - study of transmutation of FP and HA by spallation neutrons • Our tasks: § study of neutron production in thick, heavy target with fissionable blanket irradiated by light ions in Ge. V range § perform relevant Monte-Carlo simulations § make comparisons between experimental data and simulations

Energy plus Transmutation - setup - Energy plus Transmutation project • Introduction • setup

Energy plus Transmutation - setup - Energy plus Transmutation project • Introduction • setup - Deuteron experiments - MCNPX simulations - Experiment Simulation - Conclusion

Proton and deuteron experiments - Energy plus Transmutation project - Deuteron experiments • Proton

Proton and deuteron experiments - Energy plus Transmutation project - Deuteron experiments • Proton and deuteron experiments • Beam monitors • Detection of neutrons • Placement of activation foils • Gamma spectra measurement and evaluation • Longitudinal results • Radial results - MCNPX simulations - Experiment Simulation - Conclusion • Until now : - p+ experiments – energies 0. 7, 1, 1. 5, and 2 Ge. V Analyzed & simulated - d+ experiments – energies 1. 6 and 2. 52 Ge. V Preliminary results, simulations in progress • On Nuclotron accelerator (Joint Institute for Nuclear Research, Dubna, Russia) • Intensity ~ 1010/bunch, 1013 total • Irradiation time: about 8 h

Beam monitors - Energy plus Transmutation project - Deuteron experiments • Proton and deuteron

Beam monitors - Energy plus Transmutation project - Deuteron experiments • Proton and deuteron experiments • Beam monitors • Detection of neutrons 27 Al beam monitor – (p, 3 pn)24 Na – well known s exp • Placement of activation foils – (d, 3 p 2 n)24 Na – only one value in our region • Gamma spectra measurement sexp= 15. 25 ± 1. 50 mbarn (2330 Me. V) and evaluation • Longitudinal results nat. Cu beam monitor – (p, X) – many isotopes 58 Co, 56 Co, 55 Co, • Radial 52 Mn, 48 Cr, 48 Sc, 44 m. Sc, 57 Ni, 48 V, 43 K, 61 Cu, etc. – well known results - MCNPX simulations - Experiment Simulation - Conclusion sexp – (d, X) – no sexp in our energy region!

Detection of neutrons - Energy plus Transmutation project - Deuteron experiments • Proton and

Detection of neutrons - Energy plus Transmutation project - Deuteron experiments • Proton and deuteron experiments • Beam monitors • Detection of neutrons • Placement of activation foils • Gamma spectra measurement and evaluation • Longitudinal results • Radial results - MCNPX simulations - Experiment Simulation - Conclusion Al Reaction Au Bi E thresh [Me. V] Half-life 197 Au (n, 2 n) 196 Au 8. 1 6. 183 d 197 Au (n, 3 n) 195 Au 14. 8 186. 1 d 197 Au (n, 4 n) 194 Au 23. 2 38. 02 h 197 Au (n, 5 n) 193 Au 30. 2 17. 65 h 197 Au (n, 6 n) 192 Au 38. 9 4. 94 h 197 Au (n, 7 n) 191 Au 45. 7 3. 18 h Co In Ta

Placement of activation foils - Energy plus Transmutation project - Deuteron experiments • Proton

Placement of activation foils - Energy plus Transmutation project - Deuteron experiments • Proton and deuteron experiments • Beam monitors • Detection of neutrons • Placement of activation foils • Gamma spectra measurement and evaluation • Longitudinal results • Radial results - MCNPX simulations - Experiment Simulation - Conclusion

Gamma spectra measurement and evaluation - Energy plus Transmutation project - Deuteron experiments •

Gamma spectra measurement and evaluation - Energy plus Transmutation project - Deuteron experiments • Proton and deuteron experiments • Beam monitors • Detection of neutrons • Placement of activation foils • Gamma spectra measurement and evaluation • Longitudinal results • Radial results - MCNPX simulations - Experiment Simulation - Conclusion Yields of produced isotopes computed with respect to all corrections… - decay during cooling, measurement, irradiation - unequable irradiation - coincidences - non point-like emittors - detector deadtime - detector efficiency

Longitudinal distributions of isotopes - Energy plus Transmutation project - Deuteron experiments • Proton

Longitudinal distributions of isotopes - Energy plus Transmutation project - Deuteron experiments • Proton and deuteron experiments • Beam monitors • Detection of neutrons • Placement of activation foils • Gamma spectra measurement and evaluation • Longitudinal results • Radial results - MCNPX simulations - Experiment Simulation - Conclusion • produced in Au and Al foils, 1. 6 Ge. V deuterons

Radial distributions of isotopes - Energy plus Transmutation project - Deuteron experiments • Proton

Radial distributions of isotopes - Energy plus Transmutation project - Deuteron experiments • Proton and deuteron experiments • Beam monitors • Detection of neutrons • Placement of activation foils • Gamma spectra measurement and evaluation • Longitudinal results • Radial results - MCNPX simulations - Experiment Simulation - Conclusion • produced in Au and Al foils, 1. 6 Ge. V deuterons

Simulations – MCNPX 2. 6. C - Energy plus Transmutation project - Deuteron experiments

Simulations – MCNPX 2. 6. C - Energy plus Transmutation project - Deuteron experiments - MCNPX simulations • MCNPX 2. 6. C - Experiment Simulation - Conclusion Different models available in the code, but: - only INCL 4 can simulate deuterons with E > 2 Ge. V - 10 x more time needed for this simulation => solved thanks CESNET METAcentrum

Experiment versus Simulations – protons - Energy plus Transmutation project - Deuteron experiments -

Experiment versus Simulations – protons - Energy plus Transmutation project - Deuteron experiments - MCNPX simulations - Experiment Simulation • protons • longitudinal • radial - Conclusion - relative ratios of experimental and simulated yields (normalized to this foil)

Exp versus Sim – longitudinal - Energy plus Transmutation project - Deuteron experiments -

Exp versus Sim – longitudinal - Energy plus Transmutation project - Deuteron experiments - MCNPX simulations - Experiment Simulation • protons • longitudinal • radial - Conclusion - 3 cm over the target axis; 2, 52 Ge. V deuteron

Exp versus Sim - radial - Energy plus Transmutation project - Deuteron experiments -

Exp versus Sim - radial - Energy plus Transmutation project - Deuteron experiments - MCNPX simulations - Experiment Simulation • protons • longitudinal • radial - Conclusion - first gap, 2, 52 Ge. V deuteron

Summary - Energy plus Transmutation project - Deuteron experiments - MCNPX simulations - Experiment

Summary - Energy plus Transmutation project - Deuteron experiments - MCNPX simulations - Experiment Simulation - Conclusion – Experiment × simulation: • Protons – good agreement for Ep ≤ 1 Ge. V – big difference for Ep ≥ 1. 5 Ge. V • Deuterons – experiment analysis in progress – simulations problematic, very time consuming, but contrivable – Future plans: • • • Detailed analysis of possible sources of uncertainties Continue deuteron experiments Perform proton experiments with higher energies to find out “where is the problem? ” Thank you for your attention. .