Nuclear Magnetic Resonance ANIMATED ILLUSTRATIONS MS Powerpoint Presentation

  • Slides: 5
Download presentation
Nuclear Magnetic Resonance ANIMATED ILLUSTRATIONS MS Powerpoint Presentation Files Uses Animation Schemes as available

Nuclear Magnetic Resonance ANIMATED ILLUSTRATIONS MS Powerpoint Presentation Files Uses Animation Schemes as available in MS XP or MS 2003 versions A class room educational material File-8 FT NMR-I http: //ugc-inno-nehu. com/links_from_web. html

PULSED NMR Acquire F. I. D. Free Induction Decay Acquisition is NMR detection soon

PULSED NMR Acquire F. I. D. Free Induction Decay Acquisition is NMR detection soon after a strong pulse: automatically in precessing nuclear magnetization induces a the digitized form signal in coil when it is free of the perturbing EM radiation F. I. D. Address Contents 1 0000 15 2 0001 14 3 0010 13 4 0011 11 8 FFT from FID 5 0100 4 Next Slide 6 0101 7 0110 1 8 0111 0 --------- DIGITIZE Computer memory Time domain 15 Analogue to Digital Converter 11 A. D. C. 0 Computer output This onedimensional FT NMR spectrum is Frequency Domain the same Spectrum information as the C. W. NMR spectrum Computer input 1111 1110 1101 1011 1000 0100 0001 0000

A program in Fortran for “Fast Fourier Transform” 1 11 Digitized FID Signal 13

A program in Fortran for “Fast Fourier Transform” 1 11 Digitized FID Signal 13 Digital Computer -------------------------------------------------- FFT Program run OUTPUT 12 10 20 30 dimension A(50), B(50), Y(50), X(50) K=32 open (unit=1, file="output") Print 10, K DO 11 N=1, K X(N)=(N-1)*3. 5/K X(N)=EXP(-1. 0*X(N)) Y(N)=X(N)*(COS(2*3. 14*(N-1)*10. 0/K)+ COS(2*3. 14*(N-1)*4. 0/K)) write (1, 20) N, Y(N) DO 12 M=1, K A(M)=0 B(M)=0 DO 13 N=1, K-1 A(M)=A(M)+Y(N)*COS(2*3. 14*(M-1)*(N-1)/K) B(M)=B(M)+Y(N)*SIN(2*3. 14*(M-1)*(N-1)/K) A(M)=A(M)/K B(M)=B(M)/K M 2=M/2 write (1, 30) M 2, A(M 2), B(M 2) FORMAT(1 x, I 2, 2 x, F 10. 5) close (unit=1) STOP END

Time domain FID data: 32 points Real Imaginary 16 data 16 data points Frequency

Time domain FID data: 32 points Real Imaginary 16 data 16 data points Frequency domain spectrum

t=0 Value between +1 & 0 0 Provision is made in the data processing

t=0 Value between +1 & 0 0 Provision is made in the data processing system, for routinely applying phase corrections +1 F. T COS F. T Real SIN Imaginary Real F. T fc cos(2πνt) + fs sin (2πνt) with fc 2 +fs 2 =1 Arbitrary Phase Real Imaginary