Nozzle Numerical Simulations New approach of CFD simulations

  • Slides: 13
Download presentation
Nozzle Numerical Simulations New approach of CFD simulations BGC Meeting 15 -09 -2017 6/9/2021

Nozzle Numerical Simulations New approach of CFD simulations BGC Meeting 15 -09 -2017 6/9/2021 Przemysław Smakulski

Basic difference between the models Reynolds-averaged Navier–Stokes Previous simulations Large eddy simulation Present simulation

Basic difference between the models Reynolds-averaged Navier–Stokes Previous simulations Large eddy simulation Present simulation 6/9/2021 Przemysław Smakulski

Boundary conditions – Paolo’s simulation p_chamber = 0. 1 bar p_in =10 bar 6/9/2021

Boundary conditions – Paolo’s simulation p_chamber = 0. 1 bar p_in =10 bar 6/9/2021 Przemysław Smakulski Nozzle φ30 mm

CFD simulation. Chamber pressure �� =0. 1 [������ ] RANS model Steady State 6/9/2021

CFD simulation. Chamber pressure �� =0. 1 [������ ] RANS model Steady State 6/9/2021 Przemysław Smakulski

CFD simulation. Chamber pressure �� =0. 1 [������ ] RANS model Steady State ?

CFD simulation. Chamber pressure �� =0. 1 [������ ] RANS model Steady State ? ? ? 6/9/2021 Przemysław Smakulski

Theoretical Mach disc dimension – present simulation comparison Nozzle Barrel Nozzle Tank chamber Mach

Theoretical Mach disc dimension – present simulation comparison Nozzle Barrel Nozzle Tank chamber Mach disc shock diameter pressure position diameter d_n [mm] p_t [bar] p_nc [bar] x_M [mm] d_Bs [mm] 3. 00 E-02 10 1. 0 E-01 0. 20 0. 15 1. 0 E-02 0. 64 0. 32 0. 48 1. 0 E-03 2. 01 1. 51 1. 0 E-04 6. 36 3. 18 4. 77 1. 0 E-05 20. 10 10. 05 15. 08 8. 80 E-06 21. 43 10. 71 16. 07 6/9/2021 Przemysław Smakulski

Convergence criteria (RMS) in model with LES RMS <10 -6 6/9/2021 Przemysław Smakulski

Convergence criteria (RMS) in model with LES RMS <10 -6 6/9/2021 Przemysław Smakulski

6/9/2021 Przemysław Smakulski

6/9/2021 Przemysław Smakulski

Statistics Outlet pressure 0. 1 bar No. of procesor cores used 16 No. of

Statistics Outlet pressure 0. 1 bar No. of procesor cores used 16 No. of iterations 155 861 Total simulation time 5· 10 -4 s Calculation hours ~68 h Number of elements (numerical mesh) 91 828 Model of turbulence LES Symultaion type 6/9/2021 Transient Przemysław Smakulski

T-s diagram for nitrogen p = 10 bar Gas N 2 p = 1

T-s diagram for nitrogen p = 10 bar Gas N 2 p = 1 mbar Isentropic expansion Gas/Liquid N 2 Solid N 2 6/9/2021 Przemysław Smakulski Real process

Temperature profile Nozzle chamber diameter Tank pressure d_n [mm] p_t [bar] p_nc [bar] 3.

Temperature profile Nozzle chamber diameter Tank pressure d_n [mm] p_t [bar] p_nc [bar] 3. 00 E-02 10 1. 0 E-01 1. 0 E-02 1. 0 E-03 1. 0 E-04 1. 0 E-05 8. 80 E-06 6/9/2021 Mach disc position x_M [mm] 0. 20 0. 64 2. 01 6. 36 20. 10 21. 43 Mach disc diameter d_M [mm] 0. 10 0. 32 1. 01 3. 18 10. 05 10. 71 Barrel shock diameter d_Bs [mm] 0. 15 0. 48 1. 51 4. 77 15. 08 16. 07 Przemysław Smakulski

De Laval micro nozzle [1] - K. Chen, M. Winter, R. F. Huang, Supersonic

De Laval micro nozzle [1] - K. Chen, M. Winter, R. F. Huang, Supersonic flow in miniature nozzles of planar configuration, J. Micromechanics Microengineering. 15 (2005) 1736– 1744. 6/9/2021 Przemysław Smakulski

Simulation of de Laval nozzle Residiual RMS for Steady State calculations Throat dimension 60

Simulation of de Laval nozzle Residiual RMS for Steady State calculations Throat dimension 60 µm Inlet pressure 2 bar Outlet pressure 1 mbar 6/9/2021 Przemysław Smakulski