Northern Rivers Tweed Valley PROJECT 540 GARDEN WASTE

  • Slides: 22
Download presentation

Northern Rivers & Tweed Valley • PROJECT 540 GARDEN WASTE FACILITY • • B&B

Northern Rivers & Tweed Valley • PROJECT 540 GARDEN WASTE FACILITY • • B&B • • SUGAR MILL

“The Project 540 Kiln has the specific intent to sequester atmospheric CO 2, in

“The Project 540 Kiln has the specific intent to sequester atmospheric CO 2, in many small localities, and to make soil good to the seventh generation. ” Geoff Moxham www. bodgershovel. com Constraints and goals • Accessible sensors • Validate simple visual tests • Cheap low-emission designs • Household uses of process heat Finessing efficient solutions including • Vortex flow induced in chimney stacks • Pre-heated and controlled air to tuyeres • Multiple purpose dampers & vents Building and testing prototype kilns • Catenary and sprung-arch trolley kilns • Side-loading carriages • Quenching and inoculating tanks Educational outreach • Community kiln-building projects • Market and show presentations Phoenix Kiln series • 20 L • 40 L • 3 cu m, small farm

Phoenix Rising • Human scaled for 1 person • Output must justify the input

Phoenix Rising • Human scaled for 1 person • Output must justify the input _________________________ • Compact method producing usable amount of char. • Metal shell of washing machine makes smoke proof shell. • Lined with fire brick • Contains and store the heat • Worked well no need to top up fuel during burn Ben Speirs http: //absorberroof. com Mark Feltrin gasificationaustralia. com

Inside the kiln Simple parts Double drum retort Lifting the lid

Inside the kiln Simple parts Double drum retort Lifting the lid

Future steps - Using the heat Creating independence in the rainforest • Heat for

Future steps - Using the heat Creating independence in the rainforest • Heat for clothes drying • Hot water • Home heating • Refrigeration • Micro-gasification • Electricity generation Thermoelectric Organic Rankin Cycle Ben Speirs http: //absorberroof. com/ Mark Feltrin http: //www. gasificationaustralia. com/

Inoculating Biochar • Charring the weeds – Lantana vines – Camphor Laurel trees –

Inoculating Biochar • Charring the weeds – Lantana vines – Camphor Laurel trees – Bamboo If composted returns CO 2 to atmosphere in 3 -5 yrs. Biochar sequesters 30 -40% of C for thousands of years. Charcoal pores: Tilling it in is “urban renewal, with quality public housing” • Crush finely smaller than ¼ in, while wet – – – worms can transport the fines Course meat grinder Garbage disposal grinder, drip on inoculant heavy drum roller lawn mower over wet char in a bay • Inoculate with: – Urine, worm juice, compost percolation – Sea minerals, brewed crop specific teas – Biodynamic compost & soil • Application: 4 t/ac = 2 lb/sy. Improves to 1 lb/sf • Animals – Chickens, cows, humans Hyphae: Microbial C reef

Mullumbimbi Community Garden Food “Growing to Share & Sharing to Grow” Fund raising Compost

Mullumbimbi Community Garden Food “Growing to Share & Sharing to Grow” Fund raising Compost Design Seed savers Promotions Site Nursery Sustainability Compost loo Water Bush regeneration Events BIOCHAR Chooks Best practises Children’s garden

Sugarcane Farming Tweed Valley - Robert Quirk Mulching with green cane tops 50 kg

Sugarcane Farming Tweed Valley - Robert Quirk Mulching with green cane tops 50 kg N/ha returns C to soil rather than going up in smoke 250 kg K/ha Nitrogen added, 2 lb/ac 6 kg P/ha facilitates break down of machine harvested trash Legumes planted directly into trash in fallow period Legumes add nitrogen Add lime at 2 t/ac then scrapes top 8 inch into mounds giving equivalent 4 t/ac of lime in the mounds Plant cane into the mounds improves aeration on land subject to flooding Traffic controlled to inter-rows & reduced cultivation Lime & cultivate only once every 6 yrs minimizing soil damage, maximize soil life

Apply char at rate 2 -4 ton/ac in 15 plots with some having no

Apply char at rate 2 -4 ton/ac in 15 plots with some having no char Test for crop yield, leaching of nutrients, nitrogen cycling, emissions of CH 4 & N 2 O Preliminary results indicate reduction in emissions of N 2 O with applications of 10 t/ha green-waste biochar High sulphate soils High N 20 with normal cultivation No agronomic benefit found to char Trails continuing with reduced N

Biochar field site – Tweed Valley NSW Lab tests at DPI show up to

Biochar field site – Tweed Valley NSW Lab tests at DPI show up to 95% reduction in N 20 emissions

30 MW cogeneration plant fueled by remnants from sugar production Saves 400, 000 tons

30 MW cogeneration plant fueled by remnants from sugar production Saves 400, 000 tons of greenhouse gases per year $220 million capital cost Government policy has resulted in a plunge in the price of renewable energy credits. Future potential for biochar production. On farm collection of cane trash and use for biochar production requires proof of agronomic or climate benefit. There is interest in small scale production for return to fields as trials

Germany seeks to reduce landfill disposal by 65 percent by 2016. Convert most of

Germany seeks to reduce landfill disposal by 65 percent by 2016. Convert most of residuals into compost and energy. Current operation Next step: Receive all green waste and kitchen waste from Wurzburg. Separate and sieved into fines for composting, Woody trash for incineration for electricity, Plastic mixed trash for electricity production in a different plant. Compost sold to farms and also bagged for retail on location. Pyrolysis plant on location to char the wood waste & produce electricity Inoculate the biochar with liquid wastes or blend with compost. Reduce odor, speed digestion, enhance soil amendment.

 No green waste to landfills + fees: $80 /ton on weigh bridge $40

No green waste to landfills + fees: $80 /ton on weigh bridge $40 / ton Carbon Pollution Reduction Scheme Self hauled green waste = 6000 t/yr Ballina Shire Bio solids = 2000 ton/yr Pickup green waste & kitchen = 4000 t/yr Shred all 12000 ton/yr Food Links Project: Build resilience Row compost for 6 to 8 weeks against climate change & peak oil Sieve to separate: Fines for compost = 5000 t/yr Chips for mulch = 4000 t/yr Waste Management Centre Pyrolyze - biochar = 3000 t/yr Send back to community Residential gardens Community gardens Broad acre application on farms Small horticultural farms Macadamia, avocado, bananas

Thank you From the Project 540 Team http: //bodgershovel. com

Thank you From the Project 540 Team http: //bodgershovel. com

Low-emission, low cost biochar kilns for small farms and villages • Focus is to

Low-emission, low cost biochar kilns for small farms and villages • Focus is to prove that emissions from small biochar kilns can be controlled to best practice standards, while using easy designs, accessible materials, and simple cues for emissions checking. • Project results are committed to the Creative Commons public domain. • Available annual biomass worldwide: (Rounded from Yevich, Logan 2002) – 4 Gt of agricultural waste (2 Gt developing world including 400 Gt field-burned, 740 Gt fuel) – 2 Gt wood fuel burned • Vision: 1 Gt of C sequestered globally via small scale pyrolysis and hands on land management = Terra Preta EXAMPLE: Anila Stove Project, Tamil Nadu (D. Friese-Greene, Schumacher Inst, Bristol) 25, 000 Number of families cooking/day 25, 000 31, 250 Kg wood used/day 62, 500 Kg of bio- residue used/day 25, 000 Kg of charcoal used/day 10, 000 tonnes Charcoal production in 1 year

Accessible Pyrometry Instrumentation Three main indicators for good pyrolysis CO monitor • Temperature of

Accessible Pyrometry Instrumentation Three main indicators for good pyrolysis CO monitor • Temperature of the kiln chamber ceiling - non-contact N-type Thermocouple inserted 100 mm into drum Non-contact Infra-Red thermometer infrared thermometer • Temperature of the pyrolysis vessel core - N-type thermocouple in ceramic shroud • CO content of the flue gasses - automotive CO monitor Time-keeping is important The “soak” period of one hour at 450 C - 500 C, needs to commence as soon as the reaction vessel core reaches temperature. This requires an process-area clock, or in our case a dedicated laptop data-logging set-up.

Biochar potential from waste biomass Available Global Biomass: • Global charcoal production, 1992 =

Biochar potential from waste biomass Available Global Biomass: • Global charcoal production, 1992 = 24 mt (FAO) • Biomass & field residues burned, 1985 = 2. 9 Gt (1995, +20%) (Yevich, Logan) • Total field waste available = 4 Gt (developing world = 2. 0 Gt (Yevich, Logan) • Total Forestry production = 9. 5 Gt/yr • Net Primary Production (NPP) = 60 Gt C/yr • Human Appropriated NPP (HANPP) = 20 Gt C/yr (32%) Conversion efficiency: • 60% of wood is emitted as volatiles: CO 2 , CO, CH 4 , and NMHC. • Traditional methods require 6 to 12 tons of wood for 1 ton of charcoal. Biochar potential (assuming 40% C fixing efficiency): • 1 Gt C/yr (assuming 50% of Ag, biofuel & forestry waste) • 2 Gt C/y (assuming conversion of 25% of HANPP or 8% of NPP).

CARBON/ENERGY BALANCE FOR CHARCOAL PRODUCTION & COMBUSTION NMHC [2. 8/34] CO [56/112] CO 2

CARBON/ENERGY BALANCE FOR CHARCOAL PRODUCTION & COMBUSTION NMHC [2. 8/34] CO [56/112] CO 2 [234/234] Wood [1000] CH 4 [17/367] aerosol [2. 2/2. 2] Charcoal kiln Biomass pyrolysis charcoal GWP = 749 Pyroligneous liquids [185] CO [45/90] [403] NMHC [1. 3/15] CH 4 [2. 9/64] charcoal stove combustion GWP = 477 aerosol [0. 7/0. 7] CO 2 [353/353] ‘fines’ & handling losses [100] (=10% but could be 20%) Brackets contain C in grams, followed by 20 year CO 2 equivalent global warming potential (GWP) Charcoal production and use is more climate damaging than burning. Kiln data – Lacaux, et al 1994; Stove emissions – Smith & Thorneloe, 1992. Warming potential of CO assumed to be 2 - ibid

CARBON/ENERGY BALANCE FOR TERRA PRETA Small Kiln Scale CO [56/112] CO 2 [234/234] CO

CARBON/ENERGY BALANCE FOR TERRA PRETA Small Kiln Scale CO [56/112] CO 2 [234/234] CO 2 [17/17] NMHC [2. 8/34] aerosol [2. 2/2. 2] Useful heat 5 MJ Pyrolysis Retort Waste Biomass pyrolysis charcoal GWP = 399 [1000] Pyroligneous liquids [185] CO 2 [? ] Soil sequestration & crop growth GWP = +- [503] N 2 0 [? ] CH 4 [? ] Brackets contain C in grams, followed by 20 year CO 2 equivalent global warming potential (GWP) Biochar soil sequestration provides relative GWP – 500, if CH 4 is captured. Kiln data – Lacaux, et al 1994; Assume waste biomass emissions = wood.

Correlation of methane emission with combustion efficiency (CO 2/CO+CO 2)

Correlation of methane emission with combustion efficiency (CO 2/CO+CO 2)