NonMendelian Genetics Genetics that dont follow Mendels laws

  • Slides: 58
Download presentation
Non-Mendelian Genetics: Genetics that don’t follow Mendel’s laws

Non-Mendelian Genetics: Genetics that don’t follow Mendel’s laws

Vocabulary Terms… 93. Pedigree Read 171 -180 94. Sex-linked trait 95. Polygenic trait 96.

Vocabulary Terms… 93. Pedigree Read 171 -180 94. Sex-linked trait 95. Polygenic trait 96. Incomplete dominance 97. Codominance 98. Multiple alleles 99. Mutation

Chromosomes and Human Genetics 2 Types of Human Chromosomes: 1. Sex Chromosomes- Determine the

Chromosomes and Human Genetics 2 Types of Human Chromosomes: 1. Sex Chromosomes- Determine the sex of the individual as well as other traits. Diploid cells have 1 pair of these. • Male- XY (not the same size but are homologous partners during meiosis). • Female- XX 2. Autosomes- Contain genes unrelated to the sex of the individual. Diploid cells have 22 pairs of these.

Determining Sex X X MOM X X X Y X Y DAD Y

Determining Sex X X MOM X X X Y X Y DAD Y

Sex-Linked Traits Genes on the Sex Chromosomes - - Expression of certain genes often

Sex-Linked Traits Genes on the Sex Chromosomes - - Expression of certain genes often appears more in one sex than the other Males have 1 x sex chromosome; therefore, it only takes that one x to be affected to make the male have a x-linked disease X linked disorders show up in males whose mothers were carriers (heterozygotes) X-linked disorders show up rarely in females See Royal Families of Europe Pedigree Ex. Eye color in fruit flies, hemophilia, colorblindness

Colorblindness Tests

Colorblindness Tests

Practice Sex-linked Problems • Hemophilia is a recessive trait linked to the x sex

Practice Sex-linked Problems • Hemophilia is a recessive trait linked to the x sex chromosome. What will the result be of mating between a carrier female and a normal male?

 • Red-green colorblindness is a recessive trait linked to the x sex chromosome.

• Red-green colorblindness is a recessive trait linked to the x sex chromosome. A colorblind female and a normal male have a child. What is the probability that it will be colorblind?

4. Muscular Dystrophy is an X-linked recessive trait. A carrier female and a normal

4. Muscular Dystrophy is an X-linked recessive trait. A carrier female and a normal male have children. Will any of their children have a chance of having this disorder? If so, who? Show your work.

NOT IN YOUR NOTES BUT GIVE IT A TRY! • Hemophilia is inherited as

NOT IN YOUR NOTES BUT GIVE IT A TRY! • Hemophilia is inherited as an X-linked recessive. A woman has a brother with this defect and a mother and father who are phenotypically normal. What is the probability that this woman will be a carrier if she herself is phenotypically normal?

Pedigree – chart showing family genetic relationships

Pedigree – chart showing family genetic relationships

Pedigree Analysis • Method of tracking a trait through generations within a family. •

Pedigree Analysis • Method of tracking a trait through generations within a family. • Good method of tracking sex-linked traits as well as autosomal traits.

Click and choose the button

Click and choose the button

X-Sex-Linked Pedigree • Shows gender bias with males exhibiting the trait more often than

X-Sex-Linked Pedigree • Shows gender bias with males exhibiting the trait more often than females

Autosomal Dominant Pedigree • Autosomal dominant traits do not skip a generation • Autosomal

Autosomal Dominant Pedigree • Autosomal dominant traits do not skip a generation • Autosomal dominant traits do not show gender bias

Autosomal Recessive Pedigree • Autosomal recessive traits skip a generation • Autosomal recessive traits

Autosomal Recessive Pedigree • Autosomal recessive traits skip a generation • Autosomal recessive traits do not show gender bias

Fill in Genotypes

Fill in Genotypes

Gene Location A. Linked – Linkage Groups – genes located so close together on

Gene Location A. Linked – Linkage Groups – genes located so close together on a chromosome that the traits always seem to appear together Ex. Red hair and freckles Ex. Colorblindness and Hemophilia XX

Gene Interactions 1. Polygenetic trait – many genes influence a single trait (ex. Height,

Gene Interactions 1. Polygenetic trait – many genes influence a single trait (ex. Height, intelligence) 2. Pleiotropic effect – one gene having many effects (ex. Gene to make testosterone)

Pleiotropy • Expression of a single gene which has multiple phenotypic effects • Marfan

Pleiotropy • Expression of a single gene which has multiple phenotypic effects • Marfan Syndrome – abnormal gene that makes fibrillin (important in connective tissues) ?

Non-Mendelian Genetics 1. Incomplete Dominance – blended inheritance - Neither form of the gene

Non-Mendelian Genetics 1. Incomplete Dominance – blended inheritance - Neither form of the gene is able to mask the other Ex. Snap dragon petal color R 1 R 1 – RED R 1 R 2 – PINK R 2 R 2 - WHITE

Try these • In a plant species, if the B 1 allele (blue flowers)

Try these • In a plant species, if the B 1 allele (blue flowers) and the B 2 allele (white flowers) are incompletely dominant (B 1 B 2 is light blue), what offspring ratio is expected in a cross between a blue-flowered plant and a white-flowered plant?

 • What would be the phenotypic ratio of the flowers produced by a

• What would be the phenotypic ratio of the flowers produced by a cross between two light blue flowers?

2. Oompas can have red (H 1 H 1), blue (H 2 H 2),

2. Oompas can have red (H 1 H 1), blue (H 2 H 2), or purple hair (H 1 H 2). The allele that controls this is incompletely dominant. A purple haired Oompa marries a blue haired Oompa. What will their children be like? Give phenotypic and genotypic ratios.

Codominance • No dominance and both alleles are completely expressed • Ex. Cat color

Codominance • No dominance and both alleles are completely expressed • Ex. Cat color • C 1 C 1 – Tan • C 1 C 2 – Tabby (black and tan spotted) • C 2 C 2 - Black

Try These 1. Cattle can be red (RR = all red hairs), white (WW

Try These 1. Cattle can be red (RR = all red hairs), white (WW = all white hairs), or roan (RW = red & white hairs together. a. Predict the phenotypic ratios of offspring when a homozygous white cow is crossed with a roan bull.

b. What should the genotypes & phenotypes for parent cattle be if a farmer

b. What should the genotypes & phenotypes for parent cattle be if a farmer wanted only cattle with roan fur?

1. A cross between a black cat & a tan cat produces a tabby

1. A cross between a black cat & a tan cat produces a tabby pattern (black & tan fur together). a. What pattern of inheritance does this illustrate? b. What percent of kittens would have tan fur if a tabby cat is crossed with a black cat?

Multiple Alleles • More than 2 alleles for one trait • Ex. Eye color,

Multiple Alleles • More than 2 alleles for one trait • Ex. Eye color, hair color, blood type, guinea pig fur color • ABO blood groups – – Each individual is A, B, AB, or O phenotype Phenotype controlled by marker on RBC IA and IB alleles are dominant to the i allele IA and IB alleles are codominant to each other

Blood Types Blood Type: • A • B • AB • O Genotype •

Blood Types Blood Type: • A • B • AB • O Genotype • IAIA, I Ai • IBIB, I Bi • IAIB • ii

Human hair color follows a similar pattern: Alleles: HBn = brown HBd = blonde

Human hair color follows a similar pattern: Alleles: HBn = brown HBd = blonde h. R = red hbk = black HBn = dark brown HBd = blonde HBn. HBd = sandy brown HBdh. R = strawberry HBnh. R = auburn blonde HBnhbk = dark brown HBdhbk = blonde Dominant does NOT mean frequent! h. R = red h. Rhbk = red hbkhbk = black Recessive can be common!

Try These 1. If a male is homozygous for blood type B and a

Try These 1. If a male is homozygous for blood type B and a female is heterozygous for blood type A, what are the possible blood types in the offspring?

2) Is it possible for a child with Type O blood to be born

2) Is it possible for a child with Type O blood to be born to a mother who is type AB? Why or why not?

3. A child is type AB. His biological mother is also type AB. What

3. A child is type AB. His biological mother is also type AB. What are the possible phenotypes of his biological father?

V. Genetic Conditions 1. Genetic Abnormality – rare condition with little or no ill

V. Genetic Conditions 1. Genetic Abnormality – rare condition with little or no ill effects - Ex. Six fingers, albino, colorblindness

2. Genetic Disorders • Inherited condition that results in a medical problem - Ex.

2. Genetic Disorders • Inherited condition that results in a medical problem - Ex. Huntington’s Disease, Sickle Cell Anemia, Hemophilia, Muscular Dystrophy

3. Genetic Disease • A genetic condition that makes the individual susceptible to infection

3. Genetic Disease • A genetic condition that makes the individual susceptible to infection (bacterial or viral) - Ex. Cystic fibrosis, Down syndrome, SCID (severe combined immunodeficiency disease = bubble boy)

VI. Mutations • Definition – any change in the DNA • Possible outcomes: good,

VI. Mutations • Definition – any change in the DNA • Possible outcomes: good, bad, or no effect • Location: – Somatic Cell (body cell) – can lead to cancer – Sex Cell – reproductive organ affecting gametes

Observed vs. Expected Ratios • Observed Ratio – what you actually get from two

Observed vs. Expected Ratios • Observed Ratio – what you actually get from two organisms having offspring – ex. having all girls • Expected Ratio – based on your Punnett square results – what you would expect to get – ex. half girls and half boys • Another Example – using dice

Human Genetics Test Topics • • Sex-linked Traits Incomplete Dominance/ Codominance Multiple Alleles (blood

Human Genetics Test Topics • • Sex-linked Traits Incomplete Dominance/ Codominance Multiple Alleles (blood typing problems) Genetic Conditions Sex Chromosomes vs. Autosomes Pedigrees/Karyotypes Observed vs. Expected Ratios LOTS OF GENETICS PROBLEMS – SHOW WORK!!!

Human Genetics Test Review Questions: My daughter is type A, my grandson is type

Human Genetics Test Review Questions: My daughter is type A, my grandson is type B. What are the blood type(s) that the father would have to be in order for my grandson to be type B?

Red-green color blindness is X-linked in humans. If a male is red-green color blind,

Red-green color blindness is X-linked in humans. If a male is red-green color blind, and both parents have normal color vision, which of the male's grandparents is most likely to be red-green color blind? • A. maternal grandmother B. maternal grandfather C. paternal grandmother D. paternal grandfather E. either grandfather is equally likely

1. Suppose a child is of blood type A and the mother is of

1. Suppose a child is of blood type A and the mother is of type 0. What type or types may the father belong to?

Suppose a father and mother claim they have been given the wrong baby at

Suppose a father and mother claim they have been given the wrong baby at the hospital. Both parents are blood type A. The baby they have been given is blood type O. What evidence bearing on this case does this fact have?

Hemophilia is a sex-linked recessive trait. Cross a hemophiliac female with a normal male.

Hemophilia is a sex-linked recessive trait. Cross a hemophiliac female with a normal male. Of all their offspring, what is the probability they will produce a hemophiliac daughter? (H = normal blood, h = hemophilia)

A man with Type A blood marries a woman with Type B blood. They

A man with Type A blood marries a woman with Type B blood. They have a type O child. What is the probability of their 15 th child having type O blood?

A man whose father is type B and whose mother is type A, has

A man whose father is type B and whose mother is type A, has a blood type of A. He marries a type A woman, whose parents had the same blood types as his parents. What are the genotypes of the man and the woman and what is the probability that their first child will be blood type A?

Coat color in cats is a codominant trait. Cats can be black, yellow or

Coat color in cats is a codominant trait. Cats can be black, yellow or calico. A calico cat has black and yellow splotches. In order to be calico. the cat must have an allele for the black color and an allele for the yellow color. Show a cross between a calico cat and a yellow cat. What are the possible genotypes and phenotypes of the offspring?

A mother and father with normal color vision produce six male children, two of

A mother and father with normal color vision produce six male children, two of whom exhibit red-green colorblindness. Their five female children exhibit normal color vision. Ignoring the fact that these parents ought to seek some family planning advice, explain the inheritance of red-green colorblindness in their male children.

A nurse at a hospital removed the wrist tags of three babies in the

A nurse at a hospital removed the wrist tags of three babies in the maternity ward. She needs to figure out which baby belongs to which parents, so she checks their blood types. Using the chart below, match the baby to its correct parents. Show the crosses to prove your choices Parents Baby Blood type Mr. Hartzel O Mrs. Hartzel Jennifer O Mr. Simon AB Rebecca A Mrs. Simon AB Holly B Mr. Peach Blood Types A O Mrs. Peach O