Nonlinear optimization An overview problems and a guide
Non-linear optimization An overview, problems and a guide
Optimization ¡ Unconstraint non-linear optimization E(w) w 2 w 1
Classes of Methods ¡ ¡ ¡ Linear optimization Constraint <-> unconstraint Gradient based 1 st order, 2 nd order Genetic Algorithms, Evolutionary Strategies Stochastic methods (Simulated Annealing, Tabu Search, …)
Ellipsoid
Rosenbrock-function
Cross-Function
Canyon-function
Step-function
Performance criteria Number of function evaluations ¡ Number of gradient calculation ¡ Time ¡ Number of fails ¡ Number of method params. ¡ Sensitivity of method params. ¡ Accuracy ¡
Methods ¡ Direct methods l l ¡ Gradient based methods l l l ¡ Successive variation Hooke-Jeeves Gradient decent Back-propagation Polak-Ribiere Second order methods l l Newton-Raphson BFGS
Successive Variation
Successive Variation
Successive Variation
Successive Variation
Hooke-Jeeves
Hooke-Jeeves
Hooke-Jeeves
Gradient descent
Gradient descent
Gradient descent
Gradient Decent
Gradient descent
Gradient descent
Back-propagation Gradient decent Momentum
Back-propagation
Back-propagation Error E Cycle
Conjugated gradients Qn property
Beam search
Polak-Ribiere Beam search
Polak-Ribiere
Newton-method Q 1 property
BFGS
BFGS
Comparison: Ellipsoid
Comparison: Cross-Function
Comparison: Rosenbrock-Function
Comparison: Canyon-Function n(E)=8983
Comparison: Step-Function n(E)=2487 n(E)=2448
Decision tree Complexity many MC / SA some GA / ES few Knowledge #minima one Multi-start differentiable no yes elliptic? aligned? no #parameters many NM / LBFGS few HJ / ROS no yes coordinate axis no ROS channels? yes curved along axes SV yes #parameters many PR / LBFGS few BFGS G / PR / BFGS flat QP / RPROP BP
- Slides: 39