Network Modeling through LASSO Regression Farrokh Alemi Ph






























- Slides: 30
Network Modeling through LASSO Regression Farrokh Alemi, Ph. D. HEALTH INFORMATICS PROGRAM HI. GMU. EDU
LASSO Regression: Variables that make other variables irrelevant HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
LASSO Regression: Identifies Markov blanket of regression’s response variable HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
Penalty Parameter LASSO Regression HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
LASSO Regression HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
Causal Networks: Parents in Markov blankets HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
Causal Network HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
Markov Blanket HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
ren HEALTH INFORMATICS PROGRAM t nt Pa re Pa Markov Blanket GEORGE MASON UNIVERSITY
Markov Blanket Child d il Ch HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
Markov Blanket Co-parents ts n e r a -p Co HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
LASSO Regression on preceding variables identifies parents in Markov blanket HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
Order of Occurrence: 1. 2. 3. By Definition By average time of occurrence By time of measurement HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
An Example HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
What are the parents in Markov blanket of RF? HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
nt ica nif Sig HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
What is the equation that will identify parents to LTH? HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
HEALTH INFORMATICS PROGRAM nt ica nif Sig nif ica nt What is the equation that will identify parents to LTH? GEORGE MASON UNIVERSITY
Repeated LASSO Regression Response Variable: Each Variable in Analysis Independent Variables: All Variables Preceding Response HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
LASSO Regression through glmnet > STARD<-read. csv("/Users/Srilatha/Desktop/STARD. csv") > data=subset(STARD, select=-c(1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15)) > colnames(data) > x<-as. matrix(data[-35]) > y<-data[, 35] > cvfit=cv. glmnet(x, y) > coef(cvfit, s="lambda. 1 se") HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
LASSO Regression through glmnet ata D d ea R nt va a ele at t. R f. D lec t o Se bse Su > STARD<-read. csv("/Users/Srilatha/Desktop/STARD. csv") > data=subset(STARD, select=-c(1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15)) > colnames(data) > x<-as. matrix(data[-35]) > y<-data[, 35] > cvfit=cv. glmnet(x, y) > coef(cvfit, s="lambda. 1 se") HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
LASSO Regression through glmnet > STARD<-read. csv("/Users/Srilatha/Desktop/STARD. csv") > data=subset(STARD, select=-c(1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15)) > colnames(data) Exclude response from > x<-as. matrix(data[-35]) independent variables > y<-data[, 35] > cvfit=cv. glmnet(x, y) > coef(cvfit, s="lambda. 1 se") HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
LASSO Regression through glmnet > STARD<-read. csv("/Users/Srilatha/Desktop/STARD. csv") > data=subset(STARD, select=-c(1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15)) > colnames(data) > x<-as. matrix(data[-35]) Set Response Variable > y<-data[, 35] > cvfit=cv. glmnet(x, y) > coef(cvfit, s="lambda. min") HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
LASSO Regression through glmnet > STARD<-read. csv("/Users/Srilatha/Desktop/STARD. csv") > data=subset(STARD, select=-c(1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15)) > colnames(data) > x<-as. matrix(data[-35]) > y<-data[, 35] Do Cross Validated > cvfit=cv. glmnet(x, y) LASSO Regression > coef(cvfit, s="lambda. 1 se") HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
LASSO Regression through glmnet > STARD<-read. csv("/Users/Srilatha/Desktop/STARD. csv") > data=subset(STARD, select=-c(1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15)) > colnames(data) > x<-as. matrix(data[-35]) > y<-data[, 35] > cvfit=cv. glmnet(x, y) > coef(cvfit, s="lambda. 1 se") List Coefficients HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
Sample Output HEALTH INFORMATICS PROGRAM Dropped Features All Significant Variables Are Parents to the Response Variable: Citalopram GEORGE MASON UNIVERSITY
Network Model of Treatment & Outcome Regressions HEALTH INFORMATICS PROGRAM GEORGE MASON UNIVERSITY
REPEATED LASSO REGRESSION IDENTIFIES ENTIRE NETWORK STRUCTURE