Network Flow Algorithm 2018 Chungnam National University System

  • Slides: 22
Download presentation
Network Flow Algorithm 2018. 이상길 충남대학교 Chungnam National University 시스템소프트웨어연구실 System Software Laboratory

Network Flow Algorithm 2018. 이상길 충남대학교 Chungnam National University 시스템소프트웨어연구실 System Software Laboratory

충남대학교 Chungnam National University -3 - 시스템소프트웨어연구실 System Software Laboratory

충남대학교 Chungnam National University -3 - 시스템소프트웨어연구실 System Software Laboratory

Network Flow Algorithm Maximum Flow Problem S에서 T까지의 가장 많은 흐름을 찾는 관점 충남대학교

Network Flow Algorithm Maximum Flow Problem S에서 T까지의 가장 많은 흐름을 찾는 관점 충남대학교 Chungnam National University -5 - 시스템소프트웨어연구실 System Software Laboratory

Network Flow Algorithm Minimum Cut Problem S와 T를 분리할 때, 가장 적은 Capacity의 Edge를

Network Flow Algorithm Minimum Cut Problem S와 T를 분리할 때, 가장 적은 Capacity의 Edge를 결정하는 방법 충남대학교 Chungnam National University -7 - 시스템소프트웨어연구실 System Software Laboratory

Network Flow Algorithm Flow and Min Cut 충남대학교 Chungnam National University -8 - 시스템소프트웨어연구실

Network Flow Algorithm Flow and Min Cut 충남대학교 Chungnam National University -8 - 시스템소프트웨어연구실 System Software Laboratory

Network Flow Algorithm Max-flow min-cut theorem. (Ford-Fulkerson, 1956) 네트워크 그래프에서 Max Flow의 값과 Min

Network Flow Algorithm Max-flow min-cut theorem. (Ford-Fulkerson, 1956) 네트워크 그래프에서 Max Flow의 값과 Min Cut의 용량은 같다 충남대학교 Chungnam National University -9 - 시스템소프트웨어연구실 System Software Laboratory

Algorithms m = Edge n = Vertex Solutions of Complexity Linear programming Ford-Fulkerson Algorithm

Algorithms m = Edge n = Vertex Solutions of Complexity Linear programming Ford-Fulkerson Algorithm Edmonds-Karp Algorithm (1972) – O(m 2 n) Dinic’s blocking flow algorithm MPM Algorithm (1978) – O(n 3) Malhotra, Promodh-Kumar and Maheshwari Dinic’s Algorithm General Push-relabel Maximum flow Algorithm Push-relabel algorithm with FIFO vertex selection rule Push-relabel algorithm with dynamic trees KRT(King, Rao, Tarjan) Algorithm James B Orlin’s + KRT’s Algorithm (2013) – O(mn) 충남대학교 Chungnam National University - 10 - 시스템소프트웨어연구실 System Software Laboratory

Edmonds-Karp (1972) m = Edge n = Vertex Maximum Flow Algorithm Ford-Fulkerson 알고리즘 구현

Edmonds-Karp (1972) m = Edge n = Vertex Maximum Flow Algorithm Ford-Fulkerson 알고리즘 구현 방법의 한 종류 반복을 통해 효과적인 경로를 찾는 방법 BFS(Breath-First Search) 를 사용하여 경로 검색 O(m 2 n) = O(VE 2) 충남대학교 Chungnam National University - 11 - 시스템소프트웨어연구실 System Software Laboratory

algorithm Edmonds. Karp input: C[1. . n, 1. . n] (Capacity matrix) T[1. .

algorithm Edmonds. Karp input: C[1. . n, 1. . n] (Capacity matrix) T[1. . n, 1. . n] (Residual matrix. T is equal to C initially) s (Source) t (Sink) output: f (Value of maximum flow) F (A matrix giving a legal flow with the maximum value) f : = 0 (Initial flow is zero) F : = array(1. . n, 1. . n) (Flow matrix) forever m, P : = Breadth. First. Search(C, T, s, t, F) if m = 0 break f : = f + m (Backtrack search, and write flow) v : = t while v ≠ s u : = P[v] F[u, v] : = F[u, v] + m F[v, u] : = F[v, u] - m T[u, v] : = T[u, v] - m T[v, u] : = T[v, u] + m v : = u return (f, F) 충남대학교 Chungnam National University - 12 - 시스템소프트웨어연구실 System Software Laboratory

James B. Olrin. + KRT Algorithm (2013) Max Flows in O(nm) = O(VE) Time,

James B. Olrin. + KRT Algorithm (2013) Max Flows in O(nm) = O(VE) Time, or Better O(nm + m 31/16 log 2 n( KRT(King, Rao, Tarjan, 1994) 알고리즘을 개선하여 성능을 높인 것 m = Edge n = Vertex A Faster Deterministic Maximum Flow Algorithm O(mn + n 2 log 2 n) , O(EV + V 2 log 2 V) 충남대학교 Chungnam National University - 13 - 시스템소프트웨어연구실 System Software Laboratory

Procedure Improve-approx-2(r, S, T ); . 01 Δ : = r(S, T; ( 02.

Procedure Improve-approx-2(r, S, T ); . 01 Δ : = r(S, T; ( 02. let C be the number of Δ-critical nodes; 03. if C ≥ m 9/16 then let Γ = Δ; 04. 05. find a Γ/(8 m)-optimal flow in G[r]; else, if m 1/3 ≤ C <m 9/16 then let Γ = Δ; 06. let Gc denote the Γ-compact network; 07. find a Γ/(16 m)-optimal flow y on Gc; 08. let y be the induced Γ/(8 m)-opt flow on G[r]; 09. update the residual capacities; 10. else, if C <m 1/3 then 11. choose the minimum value Γ such that 12. the number C of Γ-critical nodes in the 13. network is less than m 1/3; 14. let Gc denote the Γ-compact network; 15. find an optimal flow y on Gc; 16. let y’ be the induced Γ/(16 m)-opt flow in G[r]; 17. update the residual capacities; 충남대학교 Chungnam National University - 14 - 시스템소프트웨어연구실 System Software Laboratory

Using Network Flow for Scheduling Multiprocessor Scheduling with the Aid of Network Flow Algorithms

Using Network Flow for Scheduling Multiprocessor Scheduling with the Aid of Network Flow Algorithms (1977, HAROLD S. STONE) 충남대학교 Chungnam National University - 15 - 시스템소프트웨어연구실 System Software Laboratory

Scheduling tasks with ready times and deadlines to minimize average error(1989, W. Shih, J.

Scheduling tasks with ready times and deadlines to minimize average error(1989, W. Shih, J. S. W. Liu, J. Chung, D. W. Gillies) 충남대학교 Chungnam National University - 16 - 시스템소프트웨어연구실 System Software Laboratory

Optimal task assignment in homogeneous networks (Cheol-Hoon Lee; K. H. Shin) 충남대학교 Chungnam National

Optimal task assignment in homogeneous networks (Cheol-Hoon Lee; K. H. Shin) 충남대학교 Chungnam National University - 17 - 시스템소프트웨어연구실 System Software Laboratory

충남대학교 Chungnam National University - 18 - 시스템소프트웨어연구실 System Software Laboratory

충남대학교 Chungnam National University - 18 - 시스템소프트웨어연구실 System Software Laboratory

충남대학교 Chungnam National University - 19 - 시스템소프트웨어연구실 System Software Laboratory

충남대학교 Chungnam National University - 19 - 시스템소프트웨어연구실 System Software Laboratory

Optimal task assignment in linear array networks(Cheol-Hoon Lee; Dongmyun Lee; Myunghwan Kim) 충남대학교 Chungnam

Optimal task assignment in linear array networks(Cheol-Hoon Lee; Dongmyun Lee; Myunghwan Kim) 충남대학교 Chungnam National University - 20 - 시스템소프트웨어연구실 System Software Laboratory

An efficient k-way graph partitioning algorithm for task allocation in parallel computing systems(Cheol-Hoon Lee;

An efficient k-way graph partitioning algorithm for task allocation in parallel computing systems(Cheol-Hoon Lee; M. Kim; C. I. Park) 충남대학교 Chungnam National University - 21 - 시스템소프트웨어연구실 System Software Laboratory

Q&A 감사합니다. 충남대학교 Chungnam National University - 22 - 시스템소프트웨어연구실 System Software Laboratory

Q&A 감사합니다. 충남대학교 Chungnam National University - 22 - 시스템소프트웨어연구실 System Software Laboratory